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PREFACE 

The California Energy Commission’s Energy Research and Development Division manages the 

Natural Gas Research and Development program, which supports energy-related research, 

development, and demonstration not adequately provided by competitive and regulated 

markets. These natural gas research investments spur innovation in energy efficiency, 

renewable energy and advanced clean generation, energy-related environmental protection, 

energy transmission and distribution and transportation.  

The Energy Research and Development Division conducts this public interest natural gas-

related energy research by partnering with RD&D entities, including individuals, businesses, 

utilities and public and private research institutions. This program promotes greater natural 

gas reliability, lower costs and increases safety for Californians and is focused in these areas: 

• Buildings End-Use Energy Efficiency 

• Industrial, Agriculture and Water Efficiency 

• Renewable Energy and Advanced Generation 

• Natural Gas Infrastructure Safety and Integrity 

• Energy-Related Environmental Research 

• Natural Gas-Related Transportation. 

Demonstration of a Multi-Analytic Risk Management Tool for the California Pipeline Industry is 

the final report for the Demonstration of a Multi-Analytic Risk Management Tool for the 

California Pipeline Industry project, grant number PIR-15-016, conducted by DNV GL, a global 

quality assurance and risk management company, with the assistance of the University of 

California Los Angeles (UCLA) as a sub-contractor. The information in this report contributes to 

the demonstration of an advanced risk assessment method as a part of the Energy 

Commission’s Natural Gas Pipeline Safety and Integrity Management Research initiative. 

For more information about the Energy Research and Development Division, please visit the 

Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy 

Commission at 916-327-1551. 
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ABSTRACT 

Maintaining natural gas pipeline safety involves making decisions based on multiple sources of 

information. Integrating information from these diverse sources – real-time data from sensors, 

older data stored in databases, incident reports, and expert knowledge – into a single 

framework can be very difficult. To address this challenge, DNV GL created a Multi-Analytic 

Risk Visualization method to combine information, regardless of its source or degree of 

uncertainty, to help comprehensively anticipate, prioritize, and manage threats to natural gas 

pipeline systems in California. 

This report provides the activities for modeling two threats chosen by the project’s industry 

partner, Southern California Gas Company. DNV GL, University of California, Los Angeles 

(UCLA) and Southern California Gas Company selected two pipelines to test the MARV™ 

method and identified the data needed for the models. DNV GL then developed an external 

corrosion Bayesian (a type of statistical model) threat model and UCLA developed a Bayesian 

third-party damage threat model for gas transmission pipelines. The industry partner’s 

confidential data was used for the models to identify the leading indicators: parameters that 

should be monitored to control the threat.  

 

Keywords: Bayesian Network, cathodic protection, disbondment, external corrosion, forecasting, 

in-line inspection, Markov process, MARV™, Monte Carlo, natural gas, pipeline, Poisson process, 

risk assessment, sensitivity analysis, statistical analysis, third party damage 
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EXECUTIVE SUMMARY 

Introduction 

Uninterrupted natural gas supply is vital to California’s economy. Nearly one-third of the state’s 

total energy demand is met by natural gas, which is the main source of generating electricity 

and in 2012 accounted for about 43 percent of all generation. California’s intrastate natural gas 

pipeline system consists of about 10,500 miles of onshore transmission pipeline in addition to 

gathering and distribution lines. Given California’s reliance on natural gas, maintaining and 

preventing damage and assessing any risks to the pipeline infrastructure is critical. For 

example, the external corrosion of buried metallic on-shore pipes has been identified as a 

serious threat to the mechanical integrity of this infrastructure. Congressionally-funded 

research conducted between 1999 and 2001 determined that the corrosion-related cost 

associated with the transmission pipeline industry was approximately $5.4 billion to $8.6 

billion annually. 

DNV GL, collaborating with the B. John Garrick Institute of Risk Sciences at the University of 

California Los Angeles and Southern California Gas Company, demonstrated a new risk 

management method for pipelines. This risk management method, the Multi-Analytic Risk 

Visualization (MARV™) method allows for more effective, systematic, and verifiable decision-

making using all the knowledge and data available to the pipeline company. Many risk 

assessment approaches are used by pipeline companies. However, as suggested by the 2016 

report by the Safety and Enforcement Division of the California Public Utility Commission, 

these risk models can be improved to reflect the failure probabilities more realistically, be 

transparent, and have common measures for comparison. An important aspect of improved 

risk models is a more defensible approach to estimating failure probabilities such as 

understanding failure mechanisms, integrating diverse knowledge of a pipeline system 

including internal and external expert knowledge, accounting for uncertainties in the data and 

automatically learning from sensors, past failures, near misses, and erroneous predictions. 

Project Purpose 

This project demonstrated the MARV™ method, which will help anticipate, prioritize and 

manage pipeline threats in a comprehensive manner to assess the safety and integrity of 

natural gas pipeline systems in California. Although risk constitutes probability and 

consequence, the focus of the proposed project improves the probability aspect of risk. A 

Bayesian Network (a type of statistical model) approach is used to estimate the probabilities of 

failure. This project (1) customized the existing Bayesian Network models for corrosion and 

mechanical threats to the California natural gas pipeline system, (2) demonstrated and 

validated the advanced risk assessment method by applying it to a natural gas pipeline system 

of a major Californian pipeline company, and (3) transferred the knowledge gained by openly 

publishing and presenting the project’s results and lessons learned to the industry, government 

and public sector. 
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Project Results 

DNV GL demonstrated a threat model that has the ability to make threat predictions on a gas 

pipeline using industry data. The threat model or MARV™ method uses software to show the 

sections of the pipeline on a map that are most at risk. DNV GL identified indicators that must 

be monitored to mitigate external corrosion, and they also identified third party-damage 

probabilities. They also created a method that identifies the most useful data using a cost-

benefit analysis.  

The pipeline industry currently uses many different methods for risk assessment, including 

qualitative to quantitative methods. Unfortunately, qualitative and semi-quantitative 

approaches, such as risk indexing, are impossible to validate and are not predictive. The fully 

quantitative approaches have too much reliance on in-line inspection results. Therefore, these 

probability threat predictions are inaccurate, especially for pipelines that cannot be inspected 

and verified. Also, many quantitative risk assessment methods require large amounts of data. 

The MARV™ method developed in this project overcomes many of these limitations.  

The MARV™ method connects causes to their effects through probabilistic models and data. 

Thus, the MARV™ method is useful if there are many factors leading to a threat, including 

those that cannot be modeled by a single analytical model. This is the case for external 

corrosion of pipelines which is the result of a complex set of interactions between soil 

parameters, water, and pipeline coatings. If a single threat, such as fracture can be completely 

modeled analytically, then the MARV™ approach is not needed. Even in such a case, the results 

of the analytical model can be integrated within the MARV™ framework.  

Since the Bayesian method used in the MARV™ method can update the probabilities based on 

new information when available, the MARV™ probability estimation process can be started 

when only small amounts of data are available. The statistical sensitivity of the probability 

estimation to causative threat factors can be used to prioritize the collection of additional data. 

Since the MARV™ method can be updated with new data, it can be integrated with sensors to 

perform real-time risk assessments. For example, third party damage sensors can be integrated 

with MARV™ for continuous monitoring and evaluation of threats. 

The MARV™ method also predicts and shows the results in a probabilistic distribution format 

with clear uncertainty (that is, it generates all possible outcomes with corresponding 

probability). This is different from conventional modeling approaches that use deterministic 

values to provide narrowly defined results and ignore other possible outcomes.  

Southern California Gas indicated that the MARV™-based decision-making approach can help 

pipeline operators determine what data is most useful and answer questions such as “What 

data would reduce uncertainty of threats the most?”, “What data should we gather first?” and 

“When do we have enough data?”. 

Project Benefits 

The risk management method improves risk assessment by consolidating and integrating 

scattered expert knowledge and uncertain data to capture new failure processes. This new 
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method will help pipeline operators better detect potential pipeline failures, and enable more 

effective decision-making regarding the pipeline failure risks. Although the main benefits of the 

method are not quantifiable, based on the historical trends of protecting life, property and the 

environment and if the tool can prevent two incidents per year, it will save gas operators $12 

million annually. Southern California Gas has had a number of discussions about obtaining the 

tool and using the model for other pipelines. While a commercial product is not yet available, 

one is being developed. At this time, the model is provided as a service and is not being sold as 

a commercial software tool. However, there is interest by the recipient team in incorporating 

this in a suite of software tools and eventually selling it commercially. 



4 

  



5 

CHAPTER 1:  
Project Purpose and Approach 

Project Purpose 
Natural gas pipelines, which are essential to California’s economy, are subject to a complex 

combination of threats that can affect pipeline safety and security. These threats can cause 

unanticipated pipeline failures that pose a danger to the public and cause economic hardship. 

Pipelines are subject to natural forces such as seismicity and soil movement, and are located in 

different terrains with varying topography, ground cover, and climates. In addition, they are 

often hidden from sight in crowded areas along with other utility assets that can encroach on 

them and interfere with their protection systems. While these pipelines transport oil or gas, 

they also carry impurities and corrosive substances such as hydrogen sulfide and carbon 

dioxide that can affect pipeline integrity.  

A reliable pipeline safety and integrity management system requires a comprehensive risk 

assessment method to predict these dynamic and interactive threats. The overall goal of this 

project was to demonstrate an advanced risk assessment method that can comprehensively 

anticipate, prioritize, and manage pipeline threats to help ensure the safety and integrity of 

natural gas pipeline systems throughout the state. 

DNV GL has developed a risk assessment method called Multi-Analytic Risk Visualization 

(MARV™) specifically tailored for pipeline threat assessment. The risk assessments approach is 

probabilistic and calculations are performed using a Bayesian Network, also referred to in this 

report as Bayesian Belief Network. The Bayesian Network is created by identifying the complex 

cause-consequence relationships of multiple variables that lead to various pipeline failure 

modes and threats. Moreover, the method allows linking various types of knowledge, data, and 

failure modes in a quantitative and transparent way. DNV GL has implemented and 

demonstrated the feasibility of the Bayesian Network method for a number of oil and gas 

pipeline companies around the world. To achieve the project goal, the specific project 

objectives are to: 

• Customize the existing corrosion and mechanical threats Bayesian Network models to the 

California natural gas pipeline system. 

• Demonstrate the advanced risk assessment method by applying it to a natural gas 

pipeline system with a major Californian pipeline company. 

• Transfer the knowledge gained by openly publishing and presenting the project’s results 

and lesson learned to the industry, government and public sector. 

Bayesian Network Approach 
This project focuses on using a Bayesian Network method to model the probability of threats to 

pipelines. The pipeline risk management approaches can be grouped into four major categories:  
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• Qualitative or semi-quantitative approaches such as, risk matrices, indexing systems, and 

bow-tie methods: These approaches are highly subjective, especially for assessing the 

likelihood of failures and they do not adequately represent the complex interactions 

among causative factors. Most critically, they cannot anticipate failures which have not 

occurred. 

• Statistical data driven approaches such as, the traditional quantitative risk assessment 

methods: They tend to aggregate failure statistics so that the fundamental causative 

factors leading to failures are not known. They require a lot of failure data and are 

inadequate in predicting new failure modes. 

• Model-based approaches: These link input data to output performance through 

mechanistic or empirical models which are then combined with various sampling 

schemes, such as the Monte-Carlo technique, to derive probability of failures. Although 

such physics-based approaches are powerful, they require enormous computational 

power for some complex systems and are generally too slow for real-time risk 

management. 

• Hybrid approaches: These techniques combine elements of statistical, model-based, and 

expert-driven approaches. 

Among the hybrid approaches, the Bayesian Network approach, embedded in MARV™, is able to 

represent a complex interactive system in a graphical intuitive format. The basis of the Bayesian 

Network method is the capability of linking multiple causes and consequences through 

conditional probability relationships as illustrated in Figure 1. 

In this overly simplified example, the pH and chloride concentration (for example, in a soil 

environment) are linked to the corrosion rate of steel through the conditional probability table 

and graphically represented as nodes in a network. An advantage of Bayesian Network method 

is that even if pH and chloride concentrations are not known precisely (represented by 50 

percent probability for two different ranges of these factors), the probability of corrosion rate 

can be estimated (upper part of Figure 1). A further advantage of the Bayesian Network is that if 

the corrosion rate is precisely known (for example, through inspection), the probabilities of pH 

and chloride concentration can be estimated by reverse inference using Bayes theorem (lower 

part of Figure 1). The conditional probability table shown in the figure can be derived either 

from physics-based models or expert elicitation.  

Although Bayesian Networks have been used for quite some time in diverse fields, the 

application of the Bayesian Network model to pipeline risk management is new and has been 

pioneered by DNV GL (Ayello, Sridhar, Koch, & Jain, 2014) (Ayello, Guan, & Sridhar, Corrosion 

Risk Assessment Using Bayesian Networks – Lessons Learned, 2016). The Bayesian Network for 

a pipeline threat is more complex for an external corrosion threat (Figure 2).  
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Figure 1: Simplified Example of a Bayesian Network  

 

Source: DNV GL 
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Figure 2: Bayesian Network of External Corrosion Threat for a Pipeline 

 

 

 

Source: DNV GL 
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A particular advantage of a Bayesian Network approach is that additional factors can be added, 

such as direct current stray current effects which were added to this Bayesian Network. The 

Bayesian Network is intuitive, graphical, and transparent enabling a variety of stakeholders to 

question and improve it. The probability distribution of any node can be compared to field data 

to demonstrate assumptions and update the model. A specific challenge in using such a 

complex Bayesian Network (and for that matter any risk assessment method) for a pipeline 

requires entering location-specific data along 100’s of miles of pipeline. DNV GL has developed 

a tool to rapidly input pipeline data along a pipeline and to present the resulting probabilities 

along the pipeline in a visualizer. Another challenge is in presenting the results of a risk 

assessment to different stakeholders. High-level decision makers wish to obtain an overview of 

risk along a pipeline rapidly, for example, through color coded map regions. Technical experts 

wish to drill down into the model to examine data and model assumptions. Field personnel may 

wish to see the results of specific actions they take on calculated probabilities. DNV GL has 

developed MARV™ as a layered tool that presents different levels of details depending on the 

desired resolution of information. More recently, others have applied the Bayesian Network 

approach to different pipeline threats (Shabarchin & Tesfamariam, 2016). 

 

Figure 3: Layered Information in MARV™ for Communication to Different Decision Makers 

 

 

Source: DNV GL 

 

The large number of nodes in pipeline cases often results in large conditional probability tables 

that require both efficient design of Bayesian Network and computational techniques. B. John 

Garrick Institute for the Risk Sciences at UCLA, a partner in this proposal, has pioneered the 

development of efficient computation techniques.  
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CHAPTER 2:  
Pipeline External Corrosion  

Pipeline External Corrosion Threats 
There are three primary reasons for the focus on the threat from pipeline external corrosion: 

potential cost and pipeline integrity consequences, regulatory requirements for external 

corrosion control systems, and challenges associated with quantitatively assessing pipeline 

external corrosion rates and the probability of failure. 

Potential Consequences 

The external corrosion of buried metallic on-shore piping has been identified as a serious threat 

to the mechanical integrity around the world (Sánchez & Kowalski, 2016). In the United States, a 

congressionally funded research project conducted between 1999 and 2001 determined that 

the corrosion-related cost associated to the transmission pipeline industry was approximately 

$5.4 billion to $8.6 billion annually (Thompson & Beavers, 2006) (Corrosion Costs and 

Preventive Strategies in the United States, 2002). 

Difficulty of Control  

The requirement for an external corrosion control system is dictated by governmental 

regulations and is a part of the design specifications and operating parameters. The design of 

the external corrosion control system depends on pipeline design, operating factors (operating 

temperature and pressure, designed life), external environment, and geographic location. A 

proven method of external corrosion control of buried or submerged steel pipelines is the 

application of coating supplemented by cathodic protection (CP) (Standard Practice Control of 

External Corrosion on Underground or Submerged Metallic Piping Systems, 2013). When a 

balance between the coating condition and the level of CP is maintained, adequate external 

corrosion control can be achieved. External corrosion normally occurs when adequate balance 

between the coating condition and the cathodic protection level cannot be established, and the 

rate at which external metal loss occurs is typically controlled by the environment in contact 

with the steel surface exposed at coating “holidays” (defects or holes) or under an unbonded 

section of coating. For buried pipelines, this environment is mainly controlled by soil, 

groundwater movement and composition, products from the electrochemical reactions 

(reduction and oxidation), and the type of coating. Numerous attempts have been made to 

establish which soil characteristics have significant impact on the rate at which metal loss 

occurs and also to develop predictive models for corrosion rates based on soil properties and 

other parameters. 

Between 1911 and 1957, the National Bureau of Standards (later called National Institute of 

Standards and Technology [NIST] under the United States Department of Commerce1) 
                                                 
1 National Bureau of Standards is referred to in this report as NIST. See www.nist.gov.  

http://www.nist.gov/
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conducted a large corrosion study that included the measurement of the external corrosion 

damage to metal coupons (strips used to evaluate a material’s life expectancy) that were 

exposed to real-world environments. These coupons were neither coated nor catholically 

protected. In 1910, the United States Congress authorized NIST to study corrosion caused by 

stray electrolytic currents and possible methods of its mitigation. Stray current corrosion was 

originally assumed to be responsible for all corrosion of metals buried in soil. Field and 

laboratory investigations were conducted over a 10-year period. The results indicated that, 

though serious corrosion resulted from stray currents, significant corrosion also occurred when 

underground metallic structures were not in the presence of stray current. NIST continued the 

investigation to determine the cause of this corrosion and the relation between some properties 

of the soil and the corrosion of buried metals. The depths of the deepest pits on approximately 

90 ferrous specimens removed from each test site were used to derive the various relations to 

be considered later. Some of the conclusions from the NIST field tests having a direct bearing 

on the conduct and interpretation of burial tests are listed below (Logan, 1945):  

• Soils differ greatly in corrosiveness. 

• Rates of corrosion change with the period of exposure. This change is not the same for all 

soils. 

• The depth of the deepest pit on a corroded area is a function of the area exposed. 

Under apparently uniform soil conditions, the rates of corrosion of two specimens of the same 

material may differ widely. 

Prediction Challenges 

The research into mechanistic quantitative assessment of pipeline external corrosion rates and 

the probability of failure of a buried pipeline has not progressed significantly. The reason is the 

complex mechanism of external corrosion, numerous factors affecting it, and the uncertainty in 

the knowledge of the variables.  

Due to the large complexity and uncertainty of many variables involved in the process of 

external corrosion, empirical models with advanced stochastic approaches have been 

considered to predict external corrosion risk in pipelines (Caleyo, On the Estimation of Failure 

Rates of Multiple Pipeline Systems, 2008) (Rivas, 2008) (Wang, 2014). For instance, Valor et al. 

modeled the formation and growth of pits using nonhomogeneous Poisson process and 

nonhomogeneous Markov process, respectively. Results were compared with laboratory data 

using various materials. (Valor, 2007) Additionally, Caleyo et al., built mathematical 

approximations to generate probability distributions using Monte Carlo simulations on 

corrosion pits depth and growth in buried pipes with collected field data on depth of corrosion 

pits and soil properties of more than 250 excavation locations. (Caleyo, Probability distribution 

of pitting corrosion depth and rate in underground pipelines: A Monte Carlo study, 2009) 

(Velazquez, 2009) 

The results of the models described above are less conservative than the mechanistic and 

deterministic models currently available. Despite the use of some of the chemical and physical 

aspects of the external pipeline system in the model assumptions, these stochastic models (as 
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acknowledged by those authors) do not account for other corrosion causing mechanisms as 

microbiologically influenced corrosion and stray current. As mentioned earlier, corrosion in 

external pipelines is a very complex and uncertain process, and to fully comprehend and 

predict failures it is imperative for a modeling approach that accounts for the various 

mechanism and possible interactions between mechanisms. Additionally, available field data to 

calibrate models is often scarce.  

Pipeline External Corrosion Threat Control Methods 

External Corrosion Direct Assessment 

One of the current widely accepted pipeline external corrosion threat controls is based on a 

method developed by NACE International2 (NACE) called External Corrosion Direct Assessment 

(ECDA). The ECDA process is a valuable tool for pipeline risk management as it shows that 

pipeline external corrosion preventive measures (for example, coating, cathodic protection) are 

working properly. The ECDA process is based on four steps (Figure 4). Implementation of the 

ECDA process required an understanding of external corrosion and the NACE standard practice 

document NACE SP502 (Pipeline External Corrosion Direct Assessment Methodology, 2002). 

 

Figure 4: The Four Steps of the External Corrosion Direct Assessment Process 

 

Source: DNV GL 

Step 1: Pre-Assessment 

The pre-assessment step of the direct assessment process helps determine if the direct 

assessment process is feasible, identify relevant data and prioritize indirect inspection 

                                                 
2 See www.nace.org. 

http://www.nace.org/
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activities. This step requires gathering data and determining which data is most useful for the 

next step of the ECDA process.  

Step 2: Indirect Inspection 

The objectives of the indirect inspection step are to identify anomalies such as water 

accumulation or holidays (defects or holes) and help prioritize dig sites that will be investigated 

during the direct examination step (step 3). This step must select dig sites that are 

representative of the entirety of the pipeline to avoid reaching incorrect conclusions.  

Step 3: Direct Examination 

The main objective of the direct examination step is to use direct pipeline inspection to verify 

the assessments performed in step 1 and 2. This is often the most expensive part of the direct 

assessment process because it requires excavating the pipeline in multiple locations. Once 

direct inspection results are collected, it is important to check if field results match modeling 

results.  

Step 4: Post Assessment 

The main objectives of the post assessment step are to use data provided by steps 1 through 3 

to determine if mitigation is required (and prioritize mitigation actions), evaluate the entire 

ECDA process, and determine the time of the next ECDA.  

In-line Inspection 

Another widely accepted pipeline external corrosion threat control is called in-line inspection 

(ILI) and is also referred to as “pigging”. This practice use “smart pigs” tools that are sent down 

a pipeline and are propelled by the pressure of the flow, taking measurements as they travel 

through the pipeline. ILI provides insight into the state of the pipeline with great spatial 

resolution. The size of the flaws detected by the “smart pigs” is often used to predict the 

remaining strength of the pipeline (In-Line Inspection of Pipelines, 2010). 

Value of the Multi-Analytic Risk Visualization Method 
The main goal of this project was to demonstrate a new risk assessment method called Multi-

Analytic Risk Visualization (MARV™), developed by DNV GL Strategic Research and Innovation. 

The method is novel as it uses Bayesian Networks to evaluate pipeline threats. Also, the 

MARV™ platform provides a quantifiable and verifiable way to incorporate the effects on risk 

of mitigation actions and monitoring activities. The method is particularly well suited to help 

the ECDA and ILI processes because the method allows (1) mechanistic models and expert 

knowledge to be combined, and (2) these models to use any type of information to update risk 

results. 
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How the Multi-Analytic Risk Visualization Method Complements External 
Corrosion Direct Assessment  

Step 1: Pre-Assessment 

The ECDA pre-assessment step presents two challenges to pipeline operators: 

1. To successfully implement the ECDA process, pipeline operators must identify relevant 

data. This is difficult when data has been lost or is uncertain (acknowledging that all 

data has a degree of uncertainty). MARV™ risk models use distributions as inputs, so 

the method can be run using uncertain and unknown data. When data is uncertain, then 

results are uncertain. This key point allows allocation of resources to the correct data 

gathering activity. Through sensitivity analysis, MARV™ determines which data should 

be gathered to reduce uncertainty the most. Focusing on the correct data gathering 

activities allows using resources to gather only data that is useful to the ECDA. 

2. Prioritizing indirect inspection activities and deciding which inspection technique is the 

most useful to the ECDA is an important part of this step. MARV™ models are displayed 

graphically by showing a network of causal relationships leading to pipeline failure due 

to external corrosion. This shows what could happen to the pipeline through cause-

consequences and helps pipeline operators decide which inspection technique is the 

most appropriate for step 2. It is not possible to make a generic list of the data required 

for the ECDA because degradation mechanisms evolve over time and even interact; 

therefore, the data most useful to the ECDA change by location and over time. 

Consequently, the MARV™ method uses the data is readily available and lets the model 

indicate what additional data should be gathered to reduce direct assessment 

uncertainties. This allows resources to be focused on gathering useful data. 

Step 2: Indirect Inspection 

The indirect inspection step also presents two challenges to pipeline operators: 

1. The main challenge in this step is to use all the pipeline data available. This includes 

general information collected during pre-assessment (step 1) and specific data collected 

during indirect inspection (step 2). Combining data in different formats and with 

different degrees of uncertainty is difficult but can be done using Bayesian inference. It 

requires making Bayesian Network models linking any type of plausibly available data 

with the physics of the pipeline, all linked though causal relationships. Consequently, 

MARV™ models do not have the required sets of inputs. MARV™ models use known 

parameters (with various degrees of certainties) to update unknown parameters through 

Bayesian inference. This allows pipeline operators to be sure that all data available has 

been used in the indirect assessment step of the direct assessment process, thus 

increasing the certainty that chosen dig sites are representative of the pipeline. 

2. A second challenge is determining the correct number of pipeline excavations needed to 

reduce pipeline external corrosion failure below an acceptable level. Bayesian inference 

can be used to calculate the optimal number of excavations required to reduce threats 

to the pipeline.  
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Step 3: Direct Examination 

When the predictions resulting from step 2 and the results from step 3 agree, planning 

mitigation actions or reassessment intervals (step 4) is straight forward. However, models and 

field results often disagree, and it is important to understand why. There are two causes for a 

mismatch between models and field results: incorrect data and unreliable models. MARV™ 

models cam help address these challenges in the following ways: 

1. Discovering incorrect data is an important part of any risk assessment program. For 

example, the direct examination step might provide wall loss thickness data that are 

inconsistent with predicted values. This is particularly useful because this new evidence 

(measured external wall loss) can be propagated though MARV™'s Bayesian Network 

external corrosion threat model, helping to identify the erroneous data.  

2. Sometimes a discrepancy between modeled results and field data comes from the threat 

models themselves. No model is perfect, and even though the MARV™ external 

corrosion model created during this project is based on the latest understanding of 

external corrosion, new knowledge on corrosion is generated by the scientific 

community every year. Consequently, MARV™ models are able to learn from mistakes. 

No model should make the same error twice, thus improving models' reliability for the 

future ECDAs. 

Step 4: Post Assessment 

The MARV™ method has two features helping the final step of the ECDA process: 

1. The first feature is the MARV™ external corrosion threat model visualization interface. 

Risk management is being done effectively using subject matter experts, but the impact 

of such risk management is not effectively communicated to all the stakeholders. 

Visualization of risk management of complex aging systems has been done, but at best 

it was simplistic, useful for some idealized systems, not real, complex systems. The 

MARV™ visualization tool extracts information out of the data generated by the model 

and makes it easy to find useful information (probability of failure, mode of failure, 

changes over time) by displaying this information on a touch screen interface. The 

MARV™ graphical representation is designed to allow hundreds of parameters to 

connect, making complex problems easy to understand, and can be used to decide what 

is the best course of action needed to mitigate the risk of failure. 

2. Forecasting is an area where MARV™ models can have the most impact. Determining the 

appropriate date of the next direct assessment is a difficult task: if the next direct 

assessment is done too late, catastrophic failures might occur; but if the next direct 

assessment is done too soon, resources that could be spent on risk management will be 

wasted gathering data.  
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In-Line Inspection 

When using ILI results, it is tempting to make a simple linear projection to forecast the state of 

the pipeline in time. Such a linear projection is often used to decide when to do the next 

inspection. A simple linear interpretation of ILI results can lead to two scenarios. 

1. If corrosion was high in the early life the pipeline and then slowed down over time 

(depicted by the red line in Figure 5), then the next ILI will be done too early, since the 

prediction (depicted by the grey line) shows higher wall loss than the reality. This 

scenario is safe because the next ILI will be performed before it is needed. However, this 

scenario can lead to negative consequences:  

• When predictions are repeatedly worse than what really happens, they can lead to a 

false sense of safety over time. 

• Spending too many resources on pipelines that do not require inspections can drain 

resources from other pipelines that do.  

 

Figure 5: Safe Prediction Can Lead to Unsafe Practices 

 

Source: DNV GL 
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2. The opposite scenario is also problematic. If corrosion is low in the early life of a 

pipeline and then increases over time (depicted by the red line in Figure 6), then the next 

ILI would be done too late since the prediction (depicted by the grey line) shows less 

wall loss than what actually occurred. 

 

Figure 6: Unsafe Prediction Can Lead to Pipeline Failure 

 

Source: DNV GL 

 

The MARV™ method combines ILI data with environmental data to predict the evolution of the 

corrosion rate over time, thus using resources on the most useful data while reducing overall 

threat to the pipeline. 

Modeling Pipeline External Corrosion Threat with Bayesian 
Networks 

The Issue 

Many engineers are not inclined to trust corrosion models because model results are often 

inconsistent with field results. There are several reasons for these inconsistencies. First, no 

single model is accurate in all situations. Simple empirical models work reasonably well in the 
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conditions for which they have been developed, but provide uncertain results outside of these 

conditions. Also, complex mechanistic models will only work as long as all applicable 

mechanisms are entirely understood, which is rare for complex aging systems. Therefore, no 

risk model can be used indiscriminately, and engineers should be aware of each model's 

limitation. 

Second, the input data used to run the models is never exact; often some of the data required 

to run the models is missing. Engineers should be aware of the uncertainty associated with each 

parameter that is used by the model. In some cases, the uncertainty will not affect the final 

results, while in other cases even a small amount of uncertainty is unacceptable. 

Third, model developers often lack the operator's knowledge of the system. Practical knowledge 

of a specific system can be hard to quantify, since it is often in the form of cause-consequence 

relationships (for example, “if X happens Y is likely"). Quantifying this knowledge is valuable 

and necessary. 

Finally, as systems age, the probability of failures increases. The number of failures, however, 

does not follow a simple easily predictable linear progression. The number of failures follows 

the so-called "bath-tub curve" in which the number of failures is relatively low for most systems 

during their normal life, until one day, the number and severity of failures increase suddenly 

and unexpectedly. 

Bayesian Networks are used to solve these issues. A Bayesian Network is a type of probabilistic 

graphical model, which can simultaneously represent many relationships between variables in a 

system. The graph of a Bayesian Network contains nodes (representing variables) and directed 

arcs that link the nodes. The arcs represent the relationships of the nodes. Unlike traditional 

statistical models, Bayesian Networks do not have to distinguish between independent and 

dependent variables. Rather, a Bayesian Network approximates the entire joint probability 

distribution of the system under study. This allows the researcher to carry out "omnidirectional 

inference," that is, to reason from cause to effect (simulation), or from effect to cause 

(diagnosis), all within the same model. 

A Bayesian Network is particularly well suited to assess pipeline threats for several reasons:  

• The graphical representation of Bayesian Networks shows all cause-consequence 

relationships leading to pipeline failure, making the best course of action to reduce the 

probability of failure clear to engineers. 

• While a problem in most modeling frameworks, data uncertainty is not a problem for 

Bayesian Network which have been developed to reason under uncertainty. 

Consequently, the lack of data is not a problem for the MARV™ method as the models 

can run with uncertain and missing data. 

• The model predicts all possible outcomes rather than one outcome. The variability in 

the possible outcomes arises from uncertain data. When certain data is added to the 

model, outcomes have low variability; when uncertain data is added to the model, 

possible outcomes have a higher variability. Variability of the outcome helps determine 

the best course of action. In a high risk/high variability situation, gathering more 
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information is the most appropriate course of action (risk might be reduced simply by 

gathering data). On the other hand, in a high risk/low variability situation, gathering 

data will not help so risk mitigation in the best course of action. Understanding 

variability can also help with deciding what data should be gathered and what data is 

not necessary, thus saving on data gathering cost. 

Original Pipeline External Corrosion Model 

External corrosion of buried pipelines is the result of a complex set of interactions between the 

soil, groundwater, coating, cathodic protection, pipeline design and construction, and material 

related factors, such as mill scale and welds. The eventual failure can occur either through 

gradual leakage of products or the burst of a pipeline depending on the flaw size, the fracture 

properties of the material, and internal pressure. The external corrosion Bayesian Network 

developed by DNV GL assesses the probability of failure of a buried pipeline due to external 

corrosion. A schematic layout of the model structure is shown in Figure 7: Overview of the 

Original External Corrosion Model. 

 

Figure 7: Overview of the Original External Corrosion Model 

 

Source: DNV GL 

 

The model is divided into six modules: 

 

1. Cathodic Protection (CP): The CP module corresponds to the probability distribution of 

the level of CP applied to the pipeline based on the information about CP history, close-

interval potential survey data, soil properties, mill scale, coating type (to account for 

shielding), wet and dry cycles, stray currents, and formation of galvanic cells due to 

diverse characteristics of the steel surface or the soil. The level of CP influences the 

external corrosion through coating damage and the chemistry developed under the 

damaged coating. 

2. Coating Damage: The Coating Damage module estimates the probability that the coating 

has damaged in a given section. Coating damage depends on several factors, such as soil 

stress, cathodic disbondment (loss of adhesion between coating and the metal 

substrate), age of coating, manufacturing defects, drainage, topography, soil type, 

coating type, operating temperature, etc.  
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3. Chemistry under Damaged Coating: The environment that is generated under the 

damaged coating is quantified in the Chemistry under the Damaged Coating. That 

environment depends on the CP potential, coating permeability, the soil properties such 

as total dissolved solids, oxygen availability, pH, and soil carbon dioxide pressure.  

4. Corrosion rates: The Corrosion module assesses the probability distribution of 

corrosion rates (uniform and localized corrosion). The severity of the corrosion rates 

will depend on the concentration of aggressive species such as chloride ions, sulfate 

ions, and bacteria.  

5. Remaining Strength: The Remaining Strength module indicates the probability 

distribution of the estimated bursting pressure at which the pipeline will fail. 

6. External corrosion failure: Finally, the External Corrosion Failure module estimates the 

probability of failure due to external corrosion for a given pipe section at one year 

intervals. When the operating pressure exceeded the bursting pressure, the pipeline is 

assumed to fail. 

The full Bayesian network resulting from the above modules is more complex and is shown in 

Figure 8. 
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Figure 8: Complete Original Bayesian Network Model of External Corrosion Threat 

 

Source: DNV GL   
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New Bayesian Network Threat Model for Pipeline External Corrosion 

Industry Partner Requirements 

After discussion with the industry partner and other pipeline operators, three major 

modifications of the pipeline external corrosion Bayesian network threat model were required: 

1. Simplification of the model: parts of the original model used information that is not 

used by United States pipeline operators and therefore should be removed from the 

model (Swati, Sanchez, Guan, Ayello, & Sridhar, 2015). 

2. Ability to use all data available: the model should be able to use all data available to 

United States pipeline operators that can influence external corrosion. 

3. Conversion to British Units: nodes in the model should be modified from the 

international system unit to more commonly used British Units. 

New Model Overview 

Although the physics of the pipeline external corrosion threat model are very similar to the 

original model (that is, cause-consequence relationships), the structure of the model (groups of 

nodes) has been simplified to fewer groups, as shown in Figure 9: 

1. Coating damage module 

2. Corrosion rate module 

3. Failure module 

4. Risk of failure module 

 

Figure 9: Overview of the Modified External Corrosion Model 

 
Source: DNV GL  
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Figure 10: Bayesian Network Model for Gas Pipeline External Corrosion Threat  

 
Source: DNV GL  
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New Model Details 

Risk of Failure Module 

The risk module was added to the original external corrosion pipeline threat model because the 

High Consequence Area (HCA) is part of the data provided by industry partner. HCAs are 

commonly found close to populated areas (for example, a shopping center), but in some 

instances, rivers, streams, lakes, and tribal land might be considered as an HCA. The risk 

module adds information to the probability of failure calculated by the previous module and 

results in a risk score. The model still allows the user to see the calculated probability of 

external corrosion. The risk of failure depends on the type of failure evaluated in the previous 

model (pipeline burst has more impact than leaks) and the presence of a HCA (HCA has more 

effect on the risk of failure than no HCA). Technical Advisory Committee members requested 

that the risk module be very simple since pipeline operators have their own ways to assess 

consequence of failures. 

 

Figure 11: Pipeline External Corrosion Threat Model: Risk Module 

 

Source: DNV GL 

 

Model inputs are: 

• HCA: Probability that a pipe section is in an HCA. The MARV™ method could also be 

used to calculate the potential impact circle of a pipeline failure, but this is out of the 

scope of this project. 

• Failure: This node calculates the probability of pipeline failure – a leak or a burst 

pipeline – due to external corrosion. However, even this node can be an input. If it is 

known that a pipe section failed, it is possible to enter this evidence to infer other 

inputs. The current limit value of wall loss is 80 of original pipeline wall thickness. 

Therefore, the model could predict that a pipeline will leak before it suffers a more 

catastrophic pipeline burst (Figure 12). 
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Figure 12: Example of Evolution of Leak (Yellow) and Burst (Red) Probabilities as a Function of 
Time. Green Represents the Probability of No Failure. 

 

Source: DNV GL 

 

Table 1: Description of the Nodes in the Risk Module of the Pipeline External Corrosion Threat 
Bayesian Network Model 

Node Description States Causes Consequences 

Risk of failure Risk ranking of the 
pipeline sections 

High 
Medium 
Low 

HCA 
Failure - 

HCA Presence of an HCA Yes 
No - Risk of failure 

Failure 

Probability of pipeline 
section leak or burst 
during the selected 
year 

Leak 
Burst 
No Failure 

Failure module Risk of failure module 

Source: DNV GL 
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Probability of Failure Module 

The probability of failure module calculates the probability that a pipeline section will fail due 

to external corrosion (not to be mistaken with frequency of failure). The new model now 

differentiates between leak and burst, allowing the model to predict the probability that a 

pipeline section will leak due to external corrosion, burst due to external corrosion, or not fail 

at all (other threats excluded). The addition of all three probabilities must be equal to one (or 

100 percent). The module is shown in Figure 13. 

Figure 13: Pipeline External Corrosion Threat Model: Pipe Section Failure Module 

 
Source: DNV GL 

The module first uses the localized corrosion rate and the probability of coating damage to 

calculate a distribution of external corrosion flaw sizes. Then, the module uses software 

developed by DNV GL to calculate the bursting pressure (Jaske, Beavers, & Harle, Effect of Stress 

Corrosion Cracking on Integrity and Remaining Life of Natural Gas Pipelines, 1996). If the 

bursting pressure is lower than the operating pressure, the pipeline may burst. If wall loss is 

higher than a value of wall thickness recommended by an industry partner, then the pipeline 

may leak.  

The inputs of the module include: 

• Operating Pressure: The pipeline operating pressure is the distribution of pipeline 

operating pressure over the year studied for a pipe section. The pipeline operating 

pressure has an impact on estimating pipeline burst due to external corrosion. The 

operating pressure interval range is 400 psi to 1,000 psi. 

• Bursting Pressure: The distribution of the bursting pressure was calculated using a 

fracture mechanics model called CORLAS (Jaske, Vieth , & Beavers, Assessment of Crack-

Like Flaws in Pipelines, 2002), developed by DNV GL. The distribution of the bursting 

pressure was made using Monte Carlo simulation to derive the conditional probability 

distribution tables of bursting pressure for a set of diameter, wall thickness, yield 

strength, and flaw dimensions (external corrosion flaw depth and length). 

• Flaw depth: This node corresponds to the depth of the external corrosion flaws. Pipeline 

flaw due to external corrosion will grow only if the corrosion rate allows it and the 

pipeline coating has been damaged. Figure 14 shows an example of corrosion flaw size 

distribution growing for 10 years after the pipeline coating has been damaged. In the 
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first year, there is a high certainty that the wall loss is negligible and on year 10, the 

flaws have grown both in size and in uncertainty. 

 

Figure 14: Evolution of Probability of External Corrosion Flaw Size (Depth) as a Function of Time 
After Coating Has Been Damaged 

 

Source: DNV GL 

 

• Flaw length: This node corresponds to the size (or length) of the external corrosion 

flaws. Depending on corrosion flaw size and proximity, the corrosion defects will 

coalesce and grow exponentially. Figure 15 shows an example the growth of pipeline 

external corrosion flaws over a 10-year period. In the first-year, flaws are small and the 

certainty is high, while after 10 years, the flaws are larger and the uncertainty in the size 

of the flaws has increased (distribution closest to the reader in Figure 15). 
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Figure 15: Evolution of Probability of External Corrosion Flaw Size (Length) as a Function of Time 
After Coating has been Damaged 

 

Source: DNV GL 

 

• Wall Thickness: The wall thickness node influences the bursting pressure value. The 

states of this node are based on the pipeline operator’s data. 

• Specified Minimum Yield Strength (SMYS): The SMYS node is the specified minimum 

yield strength for steel of the pipe section. The SMYS node influences the bursting 

pressure value. The range of SMYS is 52,000 to 70,000 psi. 
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Table 2: Description of the Nodes in the Risk Module of the Pipeline External Corrosion Threat 
Bayesian Network Model 

Node Description States Causes Consequences 

Failure 

Probability of pipeline 
section leak or burst 
during the selected 
year 

Leak 
Burst 
No Failure 

Operating Pressure 
Bursting Pressure 
Flaw depth 

Risk of failure module 

Operating Pressure 
Probability of 
operating pressure in 
pipe section 

400-450 psi 
450-500 psi 
500-550 psi 
550-600 psi 
600-650 psi 
650-700 psi 
700-750 psi 
750-800 psi 
800-850 psi 
850-900 psi 
900-950 psi 
950-1000 psi 

- Failure 

Bursting Pressure 
Probability of bursting 
pressure of  pipe 
section 

400-450 psi 
450-500 psi 
500-550 psi 
550-600 psi 
600-650 psi 
650-700 psi 
700-750 psi 
750-800 psi 
800-850 psi 
850-900 psi 
900-950 psi 
950-1000 psi 

SMYS 
Wall Thickness 
Flaw Length 
Flaw Depth 

Failure 

Flaw depth 
Probability of external 
corrosion flaw size: 
depth 

0-0.05 inch 
0.05-0.1 inch 
0.1-0.15 inch 
0.15-0.2 inch 
0.2-0.25 inch 
0.25-0.3 inch 
0.3-0.35 inch 
0.35-0.4 inch 
0.4-0.45 inch 
0.45-0.5 inch 
0.5-0.55 inch 
0.55-0.6 inch 

Corrosion Rate 
Module 
Coating Damage 
module 

Bursting Pressure 

Flaw length 
Probability of external 
corrosion flaw size: 
length 

0-1 inch 
1-10 inch 
10-25 inch 
25-50 inch 
50-75 inch 
75-100 inch 

Corrosion Rate 
Module 
Coating Damage 
module 

Bursting Pressure 

Wall Thickness 
Probability of wall 
thickness 

0.375-0.499 inch 
0.499-0.625 inch - Bursting Pressure 

SMYS Probability of pipe 
section SMYS 

52000-60000 psi 
60000-70000 psi - Bursting Pressure 

Source: DNV GL 
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Coating Damage Module 

The coating damage module of the pipeline external corrosion rate Bayesian network threat 

model calculates the probability that the pipeline coating is damaged at a specific location and 

date. Pipeline coating damage can take different forms (for example holidays, disbondment) 

and coating damage initiates the corrosion process if sufficient CP does not propagate into the 

damaged area. The coating damage module balances coating adhesive forces (such as surface 

preparations) with external forces (for example, soil stress) while considering the type of 

coating and the age of the coating. Figure 16 shows an overview of the coating damage module. 

 

Figure 16: Pipeline External Corrosion Threat Model: Coating Damage Module 

 

Source: DNV GL 

The inputs of the model are: 

• Coating Damage: Calculated probability that the pipeline’s coating is damaged at 

specific location and date. If coating damage is observed, it is possible to use this node 

as an input. 

• Age of Coating: The age of the coating is the age of the coating since it was applied on 

the metal surface. Coating repairs reset the age of the coating of the repaired pipeline 

section. The age of the coating increase with time. This node has a direct impact on the 

estimation of the “Coating Damage” node. 

• Coating Type: The coating type indicates the type of protective coating that was used 

along the pipeline. The coating acts as a barrier against corrosion. There are various 

types of coatings used in the industry. The states of this node are:  3PE, Extruded 

Polyethylene, Polyethylene Tape, Fusion Bonded Epoxy, Asphalt and Coal Tar. This node 
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has a direct impact on the “Shielding Factor,” “External Forces,” and “Cathodic Effect” 

nodes. 

• External Forces: The external forces are a combination of the effects of the surface 

preparation of the coating, the dents/girth weld presence and weld/bend presence. The 

conditional probability table of this node was prepared with the help of subject matter 

experts and literature review. 

• Soil Stress: The estimation of the soil stresses depends on a combination of the type of 

soil, drainage and depth of cover. The conditional probability table of this node was 

prepared with the help of subject matter experts and literature review. 

• Dents: The location of the girth welds between pipe joints and the dents (mechanical 

deformation of pipeline due to external forces) is important to know due to the effect 

they have on the “External Forces” node. Girth welds require coating to be applied in the 

field as compared to the rest of the pipe body that may have a factory applied coating. 

Such field applied coatings tend to be worse in terms of their ability to create coating 

disbondments and shielding of CP than factory applied coatings. Similarly, the locations 

of the pipeline bends are also important. The states of these nodes are: At dent/girth 

weld and Away from dent/girth weld. 

• Surface Preparation for Coating: The purpose of surface preparation is to clean and/or 

abrade the pipeline metal surface for better adhesion of the coating. There are various 

types of surface preparation methods described in Industry standards (for example, 

National Association of Corrosion Engineers or NACE) and these are specified by coating 

manufacturers. The states of this node are:  water blasting, abrasive blasting with 

walnut shells, abrasive blasting with silica sands, power wire brush and no preparation. 

This node has a direct impact on the “External Forces” node, as lack of coating adhesion 

due to poor surface preparation can affect coating damage probability. It should be 

noted that the presence of mill scale also affects the corrosion potential of the steel 

surface in cases where CP does not penetrate to the coating defects (for example, during 

dry periods when continuous water layer is absent). However, for simplicity, this 

second-order effect is ignored in this model. 

• Cathodic Effect: Cumulative effect of potential, drainage and coating type have on 

coating disbondment. High CP potential is known to increase coating disbondment for 

certain coatings. 

• Depth of Cover: This node refers to the soil cover above the pipeline. High depth of 

cover protects the pipeline from third party damage and facilitates the flow of current 

when polarizing the pipeline under a cathodic protection system. The states of this node 

are with the 0 meter to 5 meter range. This node impacts the “Soil Stress” node. 

• Instant Off Potential: The Instant Off-Potential is the polarized pipe-to-soil potential 

measurement taken immediately after turning off the cathodic protection current. This 
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potential approximates the pipe-to-soil potential without an IR drop when the current 

was on.3 This node impacts the “Cathodic effect” node. 

• Drainage: Probability of the type of drainage found around the pipe section, from well-

drained soil to poorly drained soil. The drainage node has effects on the “Soil Stress” 

node and the “Cathodic Effect” node. 

• Annual Rainfall: The average annual rainfall at the location of the pipe section. Rainfall 

is important for the understanding of the soil chemistry and its effect on corrosion 

rates. Wetting and drying cycles can exacerbate corrosion rate through a combination of 

the reduction in the duration of CP, increased access of dissolved oxygen, concentration 

of the electrolyte, and the creation of higher valence iron oxides that in turn increase 

the oxidizing potential of the environment contacting the pipe. This node has a direct 

impact on the “Drainage” node.  

• Topography: The local topography at the pipeline right-of-way provides an indication of 

the water table, soil water absorption, drainage capacity etc. This node has a direct 

impact on the “Drainage” node. The states are: undulating, ridges, inclined, depressed, 

leveled and side slope. 

• Soil Type: The soil type provides an indication of the soil chemical and physical 

properties, which would have a direct impact on the soil stress, CP shielding, and 

drainage. The states of this node are: sand, clay, loam and mixed soils.  

 

Table 3: Description of the Nodes in the Coating Damage Module of the Pipeline External 
Corrosion Threat Bayesian Network Model 

Node Description States Causes Consequences 

Coating Damage 
Probability that coating 
is damage at pipe 
section 

Yes 
No 

Age of Coating 
External Forces 
Coating Type 
Cathodic Effect 

Failure module 

Age of Coating 
Probability of the age 
of the coating 

0 - 5 years 
5 - 10 years 
10 - 15 years 
15 - 20 years 
20 - 25 years 
25 - 30 years 
30 - 35 years 
35 - 40 years 
40 - 45 years 
45 - 50 years 

- Coating Damage 

Coating Type Probability of coating 
type 

3PE 
Extruded polyethylene 
Polyethylene tape 
Fusion Bonded Epoxy 
Asphalt 

- 
Coating Damage 
Cathodic Effect 
External Forces 

                                                 
3 IR drop is the electrical potential difference between the two ends of a conducting phase during a current flow. This 
voltage drop across any resistance is the product of current (I) passing through resistance and resistance value (R). 
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Node Description States Causes Consequences 

Coal Tar 

External Forces 
Probability of external 
forces applied to the 
pipe section 

High 
Medium 
Low 

Soil Stress 
Dents 
Surface Preparation 
Welds/Bends 

Coating Damage 

Cathodic Effect 

Cumulative effect of 
potential, drainage and 
coating type have on 
coating disbondment 

High 
Medium 
Low 

Drainage 
Instant Off Potential 
Coating Type 

Coating Damage 

Soil Stress 
Probability of soil 
stresses around the 
pipe section 

High 
Medium 
Low 

Soil Type 
Depth of cover 
Drainage 

External Forces 

Dents Probability of a dent 
being present 

Yes 
No - External Forces 

Surface Preparation 
for Coating 

Probability of the type 
of surface preparation 
used before 
application of coating 
on pipe section 

Water blasting 
Abrasive blasting with 
walnut shells 
Abrasive blasting with 
Silica sands 
Power wire brush 
No preparation 
 

- External Forces 

Welds/Bends 
Probability of presence 
of a weld or bend in 
pipe section 

Yes 
No - External Forces 

Depth of Cover Probability of the pipe 
section depth of cover 

0 m 
0-1 m 
1-3 m 
3-5 m 

- Soil Stress 

Instant Off Potential 

Probability of effective 
surface potential in mV 
(reference: saturated 
calomel electrode) 

-500 to -650 mV 
-650 to -700 mV 
-700 to -750 mV 
-750 to -800 mV 
-800 to -950 mV 
-950 to -1100 mV 
-1100 to -1200 mV 
-1200 to -1500 mV 

- Cathodic Effect 

Drainage 

Probability of the type 
of drainage found 
around the pipe 
section 

Well drained 
Moderately drained 
Poorly drained 

- Soil Stress 
Cathodic Effect 

Annual Rainfall Probability of the 
annual rainfall  

1000-100 mm/year 
100-10 mm/year 
10-0 mm/year 

- Drainage 

Topography 
Probability of the type 
of topography above 
the pipeline 

Undulating 
Ridged 
Inclined 
Depressed 
Level 
Side slope 

- Drainage 

Soil Type Probability of type of 
soil 

Sand 
Clay 
Loam 
Mixed Soils 

- Drainage 
Soil Stress 

Source: DNV GL 
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Corrosion Rate Module  

The corrosion rate module of the pipeline external corrosion rate Bayesian network threat 

model calculates a range of possible corrosion for specific pipe sections and dates. Figure 17 

shows an overview of the coating damage module. 

 

Figure 17: Pipeline External Corrosion Threat Model: Corrosion Rate Module 

 

Source: DNV GL 

The inputs of the model are: 

• Corrosion Rate: Field data on corrosion rates for pipeline external corrosion rates were 

obtained from a National Institute of Standards and Technology (NIST) report4 (Ricker, 

2006). The study assessed corrosion of mild steel coupons buried in various locations of 

the United States with different soil types and chemical composition (chlorides and 

sulfates), analyzed at frequent intervals. Results indicated the corrosion rate of the 

various coupons. A distribution of the values for the localized corrosion rates was used 

to populate the conditional probability table of the corrosion rate node. Localized 

corrosion rate data were used because rates are higher than for uniform corrosion. NIST 

data was modified using a Monte Carlo simulation approach to generate external 

corrosion rates for all ranges of pH, CP potential and shielding effect according to NACE 

standards SP0775. (Preparation, Installation, Analysis, and Interpretation of Corrosion 

Coupons in Oilfield Operations, 2013) 

• Fraction of the Year CP was Operational: This node corresponds to the period in a year 

in which the CP system was operating. The states of this node range from zero (no CP at 

all) to one (CP system worked perfectly all year). The unit is the fraction of a year CP 

system was operational. This node affects the corrosion rate. 

                                                 
4 National Institute of Standards and Technology, formerly National Bureau of Standards, www.nist.gov.  

http://www.nist.gov/
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• pH Undercoating: This node affects the corrosion rate. The pH of the solution under the 

disbonded coatings will depend on the potential under the coating disbondment and the 

availability of the cations to compensate for the bicarbonates or carbonates. High pH 

solution is the result of reduction of oxygen or water due to cathodic protection. 

Therefore, enough oxygen should be available for the reduction and the CP potential 

should be high for alkaline conditions to prevail under the disbonded region. On the 

other hand, if CP does not penetrate into the disbanded region, the hydrolysis of the 

dissolved ferrous ions from corrosion may decrease the pH. Detailed mathematical 

models for the pH under disbanded coatings are available (N.Sridhar, D.S.Dunn et al. 

2002, King, Jack et al. 2004, Been, King et al. 2005, Song and Sridhar 2006, Song and 

Sridhar 2008, Song 2010, Song 2010, Song 2012). However, for the purposes of this 

work, subject matter expert input was used.  

• Oxygen (O2) Availability: The amount of available oxygen in the soil is an estimation 

based on the type of drainage and the porousness of the soil. The available oxygen 

affects the pH in disbonded coating regions by its cathodic reduction.  

• Dissolved Solids: The total dissolved solids correspond to the total amount of charged 

ions, including minerals, salts or metals, dissolved in the soil per liter of water (mg/L). 

This node directly impacts the estimation of the pH under the coating. The states of this 

node range from 0 to 800 mg/L. 

• Instant Off Potential: This node is the same as the “Instant Off Potential” node described 

in the previous module, and has an additional effect on the corrosion rate. 

• Coating Shielding: The coating shielding node accounts for the probability of developing 

shielding at the coating surface, which depends mainly on the type of coating and soil 

(essentially the resistivity of the ground water). For example, polyethylene tape shields 

the CP from entering the disbonded region because it has a poor ionic conductivity. 

Combined with its shielding tendency, the polyethylene tape also undergoes significant 

wrinkling under differential soil stresses, creating disbonded regions.  

• Soil Porosity: The soil porosity may indicate the retention of moisture in the soil and 

provides an indication of the oxygen permeability of the soil. Consequently, this node 

has an impact on the “O2 availability” node. Generally, porous soils allow greater oxygen 

access to the water contacting the pipeline. Node states are 0 percent to 60 percent. 

• Drainage: This node is the same as the “Drainage” node described in the previous 

module, but it has additional effect on the corrosion rate by influencing the amount of 

oxygen available around the pipe. 
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Table 4: Description of the Nodes in the Corrosion Rate Module of the Pipeline External Corrosion 
Threat Bayesian Network Model 

Node Description States Causes Consequences 

Corrosion Rate 
Probability of the 
external corrosion rate 
value 

0-2 mm/year 
2-5 mm/year 
5-10 mm/year 
10-15 mm/year 
15-30 mm/year 

Fraction of the Year 
CP was Operational 
pH Under Coating 
Instant Off Potential 

Failure module 

Fraction of the Year 
CP was Operational 

Probability of the 
fraction of the year CP 
system was 
operational 

0-0.25 
0.25-0.5 
0.5-0.75 
0.75-1 

- Corrosion Rate 

pH Under Coating Probability of pH value 
under coating 

6-8 
8-9 
9-11 

Dissolved Solids 
O2 Availability Corrosion Rate 

O2 Availability 

Probability of oxygen 
availability in the water 
around the pipe 
section 

High 
Medium 
Low 

Soil Porosity 
Drainage pH Under Coating 

Dissolved Solids 

Probability of 
concentration of total 
dissolved solids in the 
ground water 

0-4 mg/L 
4-50 mg/L 
40-110 mg/L 
110-800 mg/L 

- pH Under Coating 

Instant Off Potential 

Probability of effective 
surface potential in mV 
(reference: saturated 
calomel electrode) 

-500 to -650 mV 
-650 to -700 mV 
-700 to -750 mV 
-750 to -800 mV 
-800 to -950 mV 
-950 to -1100 mV 
-1100 to -1200 mV 
-1200 to -1500 mV 

- pH Under Coating 
Corrosion Rate 

Coating Shielding 
Probability that the 
coating is susceptible 
to shielding 

Yes 
No Soil Type Corrosion Rate 

Soil Porosity Probability of the soil 
porosity value 

0-0.1 
0.1-0.2 
0.2-0.45 
0.45-0.6 

- O2 Availability 

Drainage 

Probability of the type 
of drainage found 
around the pipe 
section 

Well drained 
Moderately drained 
Poorly drained 

- O2 Availability 

Annual Rainfall Probability of the 
annual rainfall  

1000-100 mm/year 
100-10 mm/year 
10-0 mm/year 

- Drainage 

Topography 
Probability of the type 
of topography above 
the pipeline 

Undulating 
Ridged 
Inclined 
Depressed 
Level 
Side slope 

- Drainage 

Soil Type Probability of type of 
soil 

Sand 
Clay 
Loam 
Mixed Soils 

- Drainage 
Coating Shielding 

Source: DNV GL 
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• Annual Rainfall: This node is the same as described in the previous module. The 

“Annual Rainfall” node influences the corrosion rate by influencing the amount of water 

present around the pipe section. If sufficient water is not present to raise the water level 

cover the pipeline surfaces, then the CP may not propagate effectively into coating 

defects. 

• Topography: This node is the same as described in the previous module. The 

“Topography” node influence the corrosion rate by influencing the amount of water 

present around the pipe section. 

• Soil Type: This node is the same as described in the previous module. The “Soil Type” 

node influence the corrosion rate by influencing the amount of water present around 

the pipe section and the resistivity of the water. 

Pipeline External Corrosion Results and Decision Making 

Interface Overview 

Task 3 results are delivered to the industry partner using DNV GL proprietary software called 

MARV™. The software has an easy-to-use touch-screen interface combining geographical maps, 

models, and prognostication (Figure 18: MARV™ Graphical User Interface Pipeline Threat Model 

and Data (left) and Results on a Map (right)). The MARV™ software allows the user to easily 

visualize the cause-consequence relationships between various factors that impact a threat’s 

likelihood in a layered manner. The user can access information to the desired level of detail by 

a drill-down approach. Inputs and outputs of models are clearly shown on a graphical user 

interface. Therefore, all data are displayed with no assumptions hidden to the user, and failure 

modes are obvious (using cause consequence analysis). The software displays three major 

features: (1) the threat module window which shows the Bayesian Network model using a drill-

down feature, (2) the map window which shows the location at which the threat is modeled, and 

(3) the time slider at the bottom right panel which allows the user to prognosticate the threat 

probability. 
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Figure 18: MARV™ Graphical User Interface Pipeline Threat Model and Data (left) and Results on a 
Map (right) 

 
Source: DNV GL 

 

MARV™ Interface Details 

Threat Model Window 

The threat model window shows an overview of the pipeline threat model as described in 

section 2.2. The model overview shows the main mechanism of pipeline failure. It is possible to 

use a drill down approach to look for more information on any specifics of the threat.  

Users can click on the button “Show Group Command” to look for more information about that 

specific node as shown in Figure 20 to Figure 23. To return to the original viewer, click on the 

“back” button. 
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Figure 19: MARV™ Threat Model Window 

 
Source: DNV GL 

Table 5: List of MARV™ Network Window Commands 

 

Show Group Command. This button shows the details for the group that this node 
represents. When the group details are show, you can click on the back button to 
get back to the main view. 

 Back button 

 Fits the network to available space 

 Show and Hide navigation pane 

 

Toggles automatic layout mode. When automatic layout mode is on, the 
application intelligently handles the position of the nodes and the user cannot 
move the nodes anymore. If the user wants to position the nodes this mode should 
be turned off. 

 

Expand/Collapse Command. Expands the node to a full view or collapses it to a 
summary view. In full view, the user can see all the possible states for that node 
and a short description of that node. 

 Source: DNV GL 
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Figure 20: MARV™ Threat Model Window: Risk Module 

 
Source: DNV GL 
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Figure 21: MARV™ Threat Model Window: Probability of Failure Module 

 
Source: DNV GL 
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Figure 22: MARV™ Threat Model Window: Coating Damage Module 

 
Source: DNV GL 
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Figure 23: MARV™ Threat Model Window: External Corrosion Rate Module 

 
Source: DNV GL 
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Threat Model Nodes 

Nodes show the degree of belief in a specific variable. By default, each node shows a summary 

of the results. For example, “Flaw Depth” (Figure 24) shows that the most probable state for the 

flaw depth at the specific location (selected on the map) and the specific time (selected in the 

time slider) is 0 inches to 0.05 inches. The certainty of that prediction is 80 percent. For 

information about this node, the user can click the “expand” button and see all possible states, 

units, and brief description of the node (Figure 25). In this example, the flaw depth (for that 

specific location and time) has to be less than 0.15 inch. The external corrosion flow size could 

be between 0 and 0.05 inch at 80 percent probability, 0.05 to 0.1 inch at 18 percent probability 

or even as high as 0.1 to 0.15 inch with a 2 percent probability. 

Figure 24: Collapsed Simple View of a Node 

 

 
Source: DNV GL 

 

Figure 25: Expanded View of a Node 

 
Source: DNV GL 
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MARV™ Interface: Map and Time Slider 

The user is able to change the location of the threat assessment (Figure 26). All data displayed 

in the threat window is linked to the location highlighted by a yellow circle. If the user moves 

the yellow circle to another location, results in the threat window are immediately updated.  

 

Figure 26: Moving in Space (Top View Location 11000 / Bottom View Location 11085) 

 

 

 
Source: DNV GL 



46 

The user is also able to change the date of the threat assessment (Figure 27). All data displayed 

in the threat window is linked to the time slider displayed on the bottom of the map. If the user 

moves the time slider to another date, results in the threat window are immediately updated.  

 

Figure 27: Moving in Time (Top View 2013 / Bottom View 2020) 

 
 

 
Source: DNV GL 
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Decision Making 

The interface shows what could potentially happen to the pipeline. Green, yellow, and red 

colors on the map are only a first step to help pipeline engineers focus their attention on 

relevant pipeline segments. The bulk of the information is shown in the network window, where 

pipeline engineers can see the data (and associated uncertainties through probability density 

functions) and the link between events (both causes and consequences). The visual nature of 

the Bayesian network allows pipeline engineers to follow the effect of an input through a chain 

of causal relationships. This makes threats clearly visible and easy to anticipate and helps with 

selecting proper action to mitigate risk. 
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CHAPTER 3:  
Pipeline Third Party Damage Threat 

Consequences of Third-Party Damage 
Third-party activity around pipelines (for example, digging or drilling) can cause damage and 

pose a large risk to public safety because of the proximity of the persons to the pipeline when 

these incidents occur.  

Between 1993 and 2012, 1630 third-party damage (TPD) incidents onshore were reported to the 

United States Department of Transportation’s Pipeline and Hazardous Materials Safety 

Administration (PHMSA). These incidents caused 141 deaths and 440 injuries, and incurred 

$369 million in property losses (Pipeline and Hazardous Material Safety Administration, 2014). 

Total actual costs including repair, loss of economic production due to energy outages, 

increased regulatory oversight, insurance, legal settlements, and reputation loss are likely to be 

orders of magnitude higher than the property damage costs. 

TPD is the leading cause of pipeline failure. From 1985 to 1997, 28.1 percent of all pipeline 

incidents were caused by TPD (Kiefner, Melosh, & Kidfner, 2001), increasing to 45.9 percent 

during 2002 to 2013. Approximately 26.3 percent of these incidents were caused by third party 

excavation alone. (Lam & Wengzing, 2016) 

Unlike causes of failure like internal and external corrosion, TPD cannot be deterministically 

modelled. External corrosion is increasingly studied, with incrementally more sophisticated 

models emerging over time. These models allow an understanding of the failure mechanisms 

involved, which can identify effective preventive measures such as the application of coating 

supplemented by cathodic protection (CP) (NACE International, Standard Practice Control of 

External Corrosion on Underground or Submerged Metallic Piping Systems, 2013).  

Understanding TPD is less a hardware reliability problem than a human reliability one. First 

generation human reliability analysis models used performance shaping factors that drive 

human error probability calculations, with more sophisticated cognitive models being used for 

second generation human reliability analysis models (Forester, Kolaczkowski, Lois, & Kelly, 

2006). Human reliability analysis requires large amounts of information that is not available for 

gas and pipeline TPD scenarios. This effectively precludes the majority of human reliability 

analysis models, so an alternate approach is required.  

However, simple empirical data analysis reveals close correlation between TPD occurrence and 

pipeline characteristics. For example, TPD occurrence increases when the year a pipeline was 

installed is unknown, (Lam & Wengzing, 2016) suggesting that the recordkeeping associated 

with that pipeline is inadequate. If the year of installation is unknown, it is also more likely that 

the exact location of that pipeline will be unknown. 

Other potentially misleading trends are also apparent. For example, TPD occurrences decrease 

as the pipeline wall thickness increases. This makes intuitive sense, but because wall thickness 
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is proportional (in general) to pipeline diameter as is how deep a pipeline is underground, the 

apparent trend between TPD occurrence and pipeline wall thickness could also be explained (at 

least in part) by a trend between TPD occurrence and depth of cover. It is not possible now to 

understand the true relationship. 

TDP is also difficult to predict. Prediction requires some deterministic or mechanistic basis. A 

basic approach to prediction relies on previous empirical data being representative of the 

future. This approach is uninformative and not useful – save for perhaps calculating insurance 

premiums. The aim of creating a sophisticated model is to understand causality – what 

influences the outcome of a process in a way that allows engineers to do something about it.  

The majority of literature involves simple statistical analysis of TPD, identifying trends and 

relationships such as the study conducted by Lam and Zhou (Lam & Wengzing, 2016). This is 

useful in terms of identifying potential causal relationships which does inform mitigation, but 

is not sophisticated or analytic. Other studies, which attempt to predict TPD, are simple, such 

as the 12-events fault tree of Chen et al (Chen, Davis, & Parker, 2006). Of these 12 events, 10 are 

“undeveloped” and require further modelling. Further, event probabilities are relatively simply 

drawn from empirical data, which combine with the simplistic modelling to yield little utility 

for current and ongoing decision making. 

Relying on empirical data will never produce an accurate predictive model. The two main 

publicly available data sources are the PHMSA’s mandatory reporting database (Department of 

Transportation, 2016) and the Common Ground Alliance’s Damage Information Reporting Tool 

(Common Ground Alliance, 2015). Both data sources involve “failure events” only and are 

discussed in greater detail in the next section. Incidents that have the same preceding events 

and causes but do not result in pipeline failure never get reported. Empirical data analysis 

simply reports on a “conditional probabilistic” relationship given failure.  

Pr(𝐶𝐶|𝐹𝐹) 

where Pr(𝑥𝑥|𝑦𝑦) is the way the probability of some event 𝑥𝑥 given event 𝑦𝑦 occurred, and in the 

expression above 𝐶𝐶 is some causal factor event and 𝐹𝐹 is the failure event. 

For predictive modelling, this probabilistic conditionality is required to be reversed or inverted. 

That is, the team is interested in the probability of failure given a causal factor event. 

Pr(𝐹𝐹|𝐶𝐶) 

The problem of reversing conditionality can be solved by applying Bayes’ Theorem as follows: 

Pr(𝐹𝐹|𝐶𝐶) =
Pr(𝐶𝐶|𝐹𝐹)Pr(𝐹𝐹)

Pr(𝐶𝐶) =
Pr(𝐶𝐶|𝐹𝐹)Pr(𝐹𝐹)

Pr(𝐶𝐶|𝐹𝐹)Pr(𝐹𝐹) + Pr(𝐶𝐶|𝐹𝐹�)Pr(𝐹𝐹�)
 

where 𝐹𝐹� is the complement of 𝐹𝐹, or the event of “not failure.” 

This makes empirical analysis for creating a predictive model virtually impossible, as there is 

no data that deals with pipeline failure not occurring when causal factor events occur. For 

example, it is unknown the number of “unsafe” operating events that occur but do not result in 

pipeline failure. 
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However, there remains another very useful information source: expert judgment and opinion. 

Bayesian analysis allows expert opinion to be incorporated into modeling – which argues for the 

use of a Bayesian modeling framework such as a Bayesian Network. The approaches used to 

develop these models are outlined in subsequent sections. 

Understanding Third-Party Damage 
TPD mechanisms are at this stage impossible to classify and generalize deterministically. 

Understanding TPD essentially requires combining information from two sources: (empirical) 

databases and expert judgment.  

Data analysis allows trends and relationships to be identified and quantified. Empirical trends 

can be identified between the apparent propensity for pipeline failure and the underlying 

parameters. Expert opinion can point us in the right “direction” for identifying what these 

parameters will likely be, and for developing a causal model that can be subsequently 

quantified to align with empirical data.  

The PHMSA database mentioned earlier is legally mandated.5 Post-2002 data in the database is 

much more detailed because the form that pipeline operators were required to fill in became 

more complete over time. The mileage data (which breaks down pipeline configuration) has 

only been updated to 2013. Forms were updated in 1984, 2002, and 2010. Operators are 

required to report incidents to PHMSA under Part 191 of Title 49 of the Code of Federal 

Regulations (CFR). An incident is reportable if it meets any of the following criteria (United 

States Office of the Federal Register, 2013): 

1. An event that involves a release of gas from a pipeline, or of liquefied natural gas (LNG), 

liquefied petroleum gas, refrigerant gas, or gas from an LNG facility and that results in 

one or more of the following consequences: 

i. A death, or personal injury necessitating in-patient hospitalization; 

ii. Estimated property damage of $50,000 or more, including loss to the operator 

and others, or both, but excluding cost of gas lost; 

iii. Unintentional estimated gas loss of three million cubic feet or more; 

2. An event that results in an emergency shutdown of an LNG facility. 

3. An event that is significant in the judgment of the operator, even though it does not 

meet (1) or (2) above. 

Not all failure events result in incidents as defined above. It is likely that all rupture failure 

modes meet the criteria and are reported, but not all leakage failure modes do. A repeatedly 

observed shortcoming of PHMSA data is that data can only be broken down by a single 

attribute, meaning that dependencies are effectively hidden. For example, it is impossible to 

                                                 
5 http://www.phmsa.dot.gov/pipeline/library/data-stats.  

http://www.phmsa.dot.gov/pipeline/library/data-stats
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identify the percentage of pipes that are in a particular location class and have a particular 

diameter range.  

Regarding the first event criterion, the threshold of $50,000 has not changed since 1984. Both 

time and inflation will increase the number of events satisfying this criterion (if all other 

variables and parameters remain unchanged). 

The effect of these limits is quite marked. Table 6 compares apparent gas pipeline failure rates 

for different international regions with different reporting criteria. Those with no lower limits 

in reporting criteria (where every failure needs to be reported) have higher failure rates, on the 

order of 2.3 – 3.6 × 10-4 failures per (km year). Those that have lower limits in reporting criteria 

(where only some failures are reported) have lower failure rates: 1.0 – 1.1 × 10-4 failures per (km 

year). It is conceivable that failure rate estimates based on PHMSA data alone could be an order 

of two to three lower than actual failure rates. 

 

Table 6: Comparison of Gas Pipeline Failure Rates by International Reporting Regime (da Cunha, 
2016) 

Country or 
Region 

Period 
Failures per 

(km year) 
Database 

Reporting 
Criteria 

Western 
Europe 

1970-
2010 

3.5 × 10-4 
European Gas Pipeline Incident Data 

Group (EGIG) 

No lower limit 
United 

Kingdom 
1962-
2010 

2.3 × 10-4 
United Kingdom’s Onshore Pipeline 

Operators Association (UKOPA) 
Database 

Brazil 
1978-
2010 

3.6 × 10-4  

United 
States 

1985-
1997 

1.1 × 10-4 PHMSA 
Death, injury, 

damage  
> $ 50 000 

Canada 
2000-
2008 

1.0 × 10-4 
National Energy Board (NEB) 

Database 
Pipelines at 15 

bar or more 

Source: UCLA 

 

PHMSA data divides failures into two cause categories: “Excavation Damage” and “Other 

Outside Force Damage.” Within the “Excavation Damage” category, from 2002 to 2013 there are 

four sub-categories of TPD causes (da Cunha, 2016). From 2002, causes that related to TPD as 

per the PHMSA data base were third party excavation and other external forces (da Cunha, 

2016). However, other databases include information for other proximate causes and are 

included here. 
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The Common Ground Alliance (CGA) is a member-centric organization with 1,700 members 

including utilities and pipeline operators. It was established in 2000 to better mitigate pipeline 

damage. The CGA maintains multiple databases that feed its Damage Information Reporting 

Tool launched in 2003. Stakeholders can voluntarily and securely submit reports on pipeline 

damage and near-misses that inform an interactive web page. This allows more database 

“fields,” and by extension parameters, that can be used in model development. However, this is 

a voluntary endeavor which must be taken into account when interpreting the data. 

The other publicly available database is the National Transportation Safety Board (NTSB) 

Pipeline Accident Reports (PARs). A summary of all TPD PARs is included in Appendix A to this 

report. The NTSB will only investigate “significant” pipeline failures, such as those that cause 

fatalities or a large amount of property damage. Consequently, NTSB databases cover a tiny 

fraction of pipeline failure events. However, PARs contain extensive analysis about preceding 

events which provide insight into pipeline-risky third-party activities. 

Project Role in Assessing Third Party Damage Risk 
The main goal of the project discussed in this report is to demonstrate a new risk assessment 

method. Developing a TPD Bayesian network model allows the MARV™ platform to provide a 

quantifiable and verifiable way to incorporate the effects of mitigation and monitoring activities 

on risk associated with third-party activity. Once key risk factors have been identified, their 

quantitative effect on risk can be calculated to inform any cost-benefit analyses. Key TPD 

factors identified throughout this project are:  

• Pipeline robustness:  Increasing the diameter, depth of cover, and wall thickness clearly 

had an effect in reducing the likelihood of TPD. There is an obvious relationship 

between the ability for pipeline strength versus typical stresses associated with TPD. 

• Culture and behaviors:  Public advertising and other awareness campaigns are very 

useful ways to positively influence third-party behavior. A reduction in TPD prevalence 

over time has been attributed largely to an increased likelihood for third parties to 

contact utilities regarding pipeline location. 

• Advice and signage:  Clear signage regarding the presence of a pipeline has obvious 

benefit in making third parties aware of pipeline locations. However, because signage 

typically does not indicate pipeline presence in advance to the third party, business 

decisions to immediately (perhaps somewhat cautiously) continue with excavation are 

often made in preference to delays associated with contacting the utilities. 

• Physical barriers:  Many studies (primarily from Europe) highlight how physical barriers 

can mitigate or effectively prevent TPD. Two separate studies showed that pipelines 

with concrete or steel slabs buried with warning tape never experienced TPD (WS Atkins 

Consultants Ltd, 2001). This issue is discussed in greater detail later in this report. 
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Modeling Pipeline Third Party Damage with Bayesian 
Networks 
Accidents and incidents involving TPD are typically a sequence of events where each event 

contributes to the likelihood of or enables the next. These events are generally known based on 

combined expertise, which allows analysts to theoretically list and potentially model these 

event sequences. 

Many modelling techniques, however, do not incorporate sequencing. For example, fault trees (a 

top-down, deductive failure analysis) do not consider one event to have occurred before 

another. Although it is possible for fault trees to be constructed to incorporate sequenced 

events, diagrammatically these events are independent events regardless of whether they were 

enabled by previous events. This is true of many popular reliability modelling techniques. 

Event Sequence Diagrams  

Event Sequence Diagrams (ESDs) have been used extensively in incident and accident 

investigation. A sequential approach to analysis aligns with human thought processes, which 

are the predominant root cause of TPD damage failure. The following four step approach was 

used to generate the TPD model. 

1. Cluster Failure Event Scenarios: A literature review was conducted, along with more 

generic research that involved the professional network, to identify all documented 

cases of TPD for which an investigation had been conducted. The NTSB was one valuable 

source of information. 

2. Create Specific Failure Event Scenarios:  For each incident identified, a specific event 

scenario was developed. This involved recreating the incident in terms of preceding 

events and decisions made by both the third parties and the pipeline operators. 

3. Develop Generic Failure Event Scenarios: From the event sequences from the previous 

step, generic scenarios were compiled that included plausible alternatives in the 

sequence. This allowed “branching” sequences that in some instances avoided pipeline 

failure. 

4. Develop Single Generic ESDs for Initiating Events:  The event sequences in step 3 were 

combined to create a single ESD for all TPD scenarios. This was then compared with the 

literature regarding TPD to ensure that all possible event scenarios were included. 

Generally, comparison with literature confirmed the completeness of the ESD, with 

branches needing to be added in only a few instances. (Chen, Davis, & Parker, 2006) 
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Figure 28: Example of Generalized Event Sequence Diagram  

 

Source: UCLA 

 

While the final ESD is broken down into several discrete diagrams, they combine through 

linking events to create one general ESD for TPD scenarios. This ESD was extensively reviewed 

by experts from the NTSB and utility organizations. 

Bayesian Networks 

ESDs are somewhat “memoryless” in that the probability that an event will occur at a point in 

time does not depend on how the sequence got to that point. This characteristic can be 

overcome by have multiple branches for different scenarios, each with its own set of 

probabilities. However, this becomes cumbersome even for a moderate number of pivotal 

events. 

Bayesian Networks inherently allow multiple node states to affect conditional probabilities of 

any node, regardless of how far removed from the initiating event that subsequent event is. 

Cause and consequence probabilities are linked and quantified using cross probability tables, 

allowing many different physics models to be combined. The use of several models enables us 

to capture not only data’s uncertainty, but also model’s uncertainty.  

The Bayesian Network was implemented by industry experts providing judgment on pivotal 

events in ESDs. Experts were then asked to quantify the estimates by giving a best guess along 

with a level of certainty on a scale of one through to five. When multiple DNV GL and UCLA 

experts were engaged for the same point, a beta distribution was used to characterize their 

uncertainty. Should one expert have a certainty of “5” (the highest), a variance of 0.2 was 

assumed for their corresponding beta distribution. Likewise, those with the lowest certainty 

have an assumed variance of 1.0. All intermediate levels of certainty had variances linearly 

dispersed between the two limits. This allowed subsequent combinations to be weighted 

… initiating 
events…

… pivotal 
events…

… the initial accident sequence is highlighted in orange …
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according to certainty (through multiplying beta distribution probability density functions, 

which are conjugate). The process is illustrated in Figure 29. 

Figure 29: Event Sequence Diagrams and the Development of Influencing Nodes 

 

Source: UCLA 

New Bayesian Network Threat Model for Third Party Damage 

The new TPD Bayesian network model for TPD is illustrated Figure 30. 

Industry Partner Requirements 

The following input nodes, which align with mandatory reporting fields for all oil and gas 

pipeline operators, are required from any operator or utility: 

1. State (location) 

2. Year of Installation 

3. Diameter 

4. Material 

5. Depth of Cover (DOC) 

6. Commodity 

7. Location Class 

8. Other Pipelines in the Vicinity 

Model Overview 

For a sequential (human) failure process, Bayesian networks are inherently difficult to visually 

appreciate and interpret. The combined ESD-Bayesian network nodes more naturally 

communicate TPD process and are examined in greater detail below. 

Excavation Over Pipeline 

The first event that triggers a TPD causal chain is a decision to conduct some form of third 

party activity over a pipeline. This event does not necessarily involve the third party starting to 

investigate the presence of the pipeline. Subsequent ESD elements deal with the decision-

making process to investigate the location further (Figure 31).  
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Figure 30: Complete Bayesian Network of Third Party Damage Threat 

 

Source: UCLA 
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Figure 31: Excavation Over Pipeline Event Sequence Diagram Element 

 

Source: UCLA 
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Markout Process 

Once the activity is planned, third parties may take steps to investigate the presence of the 

pipeline. If they do, there is a chance that the ensuing “markout” process will be done 

accurately and timely (Figure 32). Inaccuracy and delays will introduce risk that the activity may 

commence without the third party being aware of the pipeline presence. 

Figure 32: Markout Process Event Sequence Diagram Element 

 

Source: UCLA 
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Unauthorized Activity 

If a third party decides to undertake an activity without seeking authorization or guidance, 

there are still mechanisms to ensure that they do not damage pipelines. This includes “right of 

way” patrols that can detect unauthorized patrols and signage (Figure 33). 

 

Figure 33: Unauthorized Activity 

 

Source: UCLA 

  

 

Excavation 
commences – no 

marking

Unauthorized 
Excavation

Pipeline Signed

Right of Way 
Patrols

Right of Way 
Patrols and 

Pipeline Signed

Markout
Procedure
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Pipelines in Proximity 

Multiple pipelines in the same vicinity are particularly problematic. Third parties who become 

aware of a pipeline in the original activity location can often move their activity nearby without 

rechecking the presence of pipelines (Figure 34).  

 

Figure 34: Pipelines in Proximity 

 

Source: UCLA 
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Utility Marks Pipeline 

Once aware of the intent of a third party, the utility can indicate through “markout” where their 

pipelines are (Figure 35).  

Figure 35: Utility Marks Pipeline 

 

Source: UCLA 
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Excavation Commences 

When excavation commences, many events or decisions can influence TPD risk. These include 

whether or not the third party uses correct procedures, and the nature of excavation (Figure 36 

and Figure 37). 

Figure 36: Excavation Commences (Part One) 

 

Source: UCLA 

Figure 37: Excavation Commences (Part Two) 

 

Source: UCLA 
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Large Scale Excavation Adjacent to Pipeline 

Third party activity does not have to occur over a pipeline for TPD to occur. Large scale 

excavation in the vicinity of pipelines can increase the risk of subsidence, which may in turn 

put stresses on the pipeline that was originally in the collapsed dirt (Figure 38). 

Figure 38: Large Scale Excavation Adjacent to Pipeline 

 

Source: UCLA 
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Mechanical Excavation 

Most TPD happens from mechanical excavation techniques. These include machine-based 

excavation involving diggers (Figure 39). 

Figure 39: Mechanical Excavation 

 

Source: UCLA  
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Hand Tool Excavation 

Excavation using hand tools is a less likely source of third party damage incidents, but is more 

likely to occur in and around residential areas. Residential areas have smaller supply pipelines 

running to individual structures and buildings, so when hand tools do cause damage, it can be 

significant due to the smaller size of the pipelines. (Figure 40). 

Figure 40: Hand Tool Excavation 

 

Source: UCLA 

 

Abnormal Drilling Conditions 

Many third-party activities involve drilling. Abnormal drilling conditions can increase the 

likelihood of TPD (Figure 41). For example, stone bedrock and other geological phenomena can 

make drill bits deviate from their intended course, damaging nearby pipelines. Third parties 

who are properly trained can typically identify abnormal drilling conditions. 
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Figure 41: Abnormal Drilling Conditions 

 

Source: UCLA 
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Pipeline Strike 

Once a pipeline is struck, damage can happen in many ways (Figure 42). Cathodic protection or 

coating can be damaged, increasing the prevalence of corrosion. Pipelines can also be dented, 

punctured or ruptured. Each failure mode occurs at different rates in different conditions. 

Figure 42: Pipeline Strike 

 

Source: UCLA  
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Deformed Pipeline 

A deformed pipeline may not fail immediately (Figure 43). Reducing pressure at the time of the 

third-party activity reduces this likelihood. It also allows inspection to identify the deformation 

before full pressure is restored, allowing repair if necessary. 

 

Figure 43: Deformed Pipeline 

 

Source: UCLA  
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Deformed Pipeline (Waterway) 

Deformed pipelines have different failure characteristics when they occur in waterways (Figure 

44). 

Figure 44: Deformed Pipeline (Waterway) 

 

Source: UCLA 

Pipeline Third Party Damage Results and Decision Making 

This section presents the MARV™ implementation of the TPD model and highlights some of the 

benefits to pipeline operators and decision makers.  

MARV™ Implementation of the Third Party Damage Model  

Graphical layers allow users of software to easily visualize the cause-consequence relationships 

between various factors that impact a threat’s likelihood, and to use a drill down-approach to 

access information at the desired level of detail. Model inputs and outputs are clearly shown 

using an intuitive graphical user interface. Figure 45 shows the graphical user interface that 
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color codes the various levels of TPD threat likelihood for a pipe segment selected by the user 

on the map. 

Figure 45: MARV™ Graphical User Interface Shows Pipeline Threat Results on a Map for Third 
Party Damage 

 
Source: UCLA 

In the example illustrated in the figure, the pipeline was divided into thousands of segments 

defined by global positioning satellite coordinates (the pipeline was also moved to a different 

location). For each segment, pipeline characteristics where entered as defined in section 3.2.3.1. 

The example includes some “actual” data and some “synthesized” data so pipeline 

characteristics cannot be inferred from Figure 45. 

The pipeline diameter, material, year of installation, and commodity class were either identical 

are very similar for all pipeline segments (as would be the case for most pipelines). The key 

factor for pipeline failure risk was largely based on depth of cover and location class.  

The colors in Figure 45 are relative. That is, “red” represents pipeline segments with the highest 

risk relative to other pipeline segments. Overall, the example had relatively low risk of TPD 

failure when compared to indicative pipeline failure characteristics for continental United 

States.  

A series of screenshots of the MARV™ TPD model modules is shown below (Figure 46 and 

Figure 47). These images correspond to various segments of the Bayesian Belief Network the 

models developed. 
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Figure 46: Picture of Overall Threat Model Window 

 
Source: UCLA 
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Figure 47: Picture of a Subsection of the Threat Model: Initial Markout Group 

 
Source: UCLA 
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The model has been quantified in the sense that it can provide the relative likelihood of damage 

due to third party activities. The quantification is based on generic information, but it is a 

property of Bayesian Networks; the model can be specialized with site or operation specific 

information, and queried to provide any case- or situation-specific assessment. 

Model Benefits 

Fundamentally the TPD model provides substantially more information than has previously 

existed for decision makers regarding oil and gas pipeline failures emanating from third party 

activity. The model allows a much more thorough understanding of the causal factors that 

influence pipeline failures. With the model, the risks can be traced back to their roots, in terms 

of human activities, and effectiveness of the mitigating or aggravating factors.  

Using a quantitative model, the pipeline owner/operator can rank risks by their corresponding 

cause and in terms of their relative likelihoods. Also, with the method introduced in Chapter 4, 

a decision maker can identify and rank “leading risk indicators” for more proactive risk 

management of the pipeline.  

The generic TPD Bayesian Network in MARVTM can be extended easily at the root cause level, and 

with some effort also in terms of consequences. Furthermore, the model can be used to explore 

preventive measures (actions and/or barriers) that can be more effective in reducing TPD risk. 

Until now there has been limited basis to understand what effect each will have and whether it 

represents value for the necessary investment.  

For example, consider a primarily residential scenario in which the main TPD revolves around 

homeowners and their contractors striking the relatively small gas supply lines to houses. It is 

reasonable to assume that television and radio advertising for a single call center would have 

more effect on homeowners than on excavating companies who should reasonably be expected 

to be aware of notification procedures. Some basic assumptions could be made about the 

expected increases in awareness for this situation, and (along with pipeline characteristics) the 

TPD model could estimate the likely positive impact such a campaign would have on TPD risk.  

From a pipeline owner’s perspective, the TPD model can be used to identify the benefits of 

modifying pipeline characteristics that are known to influence TPD frequency (like depth of 

cover or pipeline diameter). The TPD model can also be used to inform procedures associated 

with third party activity, such as turning off supplies to reduce the risk of immediate failure 

should a pipeline be deformed. Turning off a supply is a costly exercise, and the TPD model can 

go some way to risk-inform the decision-making process associated with it. 

Finally, the TPD model can also inform urban planning considerations. Pipelines originally 

installed in more rural areas can be subject to ongoing urban expansion. This means that 

planning considerations for a new subdivision or suburb can be based on this TPD model and 

existing pipeline infrastructure. The extent to which mitigating activities such as cages, signs 

and so on impact risk can inform planning considerations and caveats that local governments 

impose on developers. 
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CHAPTER 4:  
Leading Indicators 

Method of Identifying the Risk Leading Factors  

Introduction 

Model-based risk leading indicators are among the effective tools for proactive risk-informed 

assessment and monitoring of a system’s operational parameters and maintaining a desired 

level of reliability. Measuring and trending values of leading risk indictors can be used to 

estimate risk margins and time trend of total risk.  

In the context of a Bayesian Network-based risk model of a system of process, and in principle, 

any node representing observable or measurable states of a physical parameter or human 

activity can be viewed as a risk indicator of the system or process. This can be carried out by 

conducting a sensitivity analysis in the system Bayesian Network to determine the degree to 

which variation in the probabilistic inference of the system node is influenced by variation of 

other nodes.  

In the proposed method, the sensitivity analysis is performed in two steps. The first phase is 

designed to determine and rank the influence of the nodes on the system node uncertainty. In 

this step, each node is considered as a whole, and a ranking metric that can aggregate the 

influence of all the states of a node in one scalar number is developed and applied. In contrast, 

in the second step each node is segregated into its states and a second metric is developed to 

rank the node-state pair's influence on the system node.  

The two-step approach addresses two categories of problems. The first category is when the 

objective of identifying the risk leading indicators is to prioritize some system factors for 

monitoring. For example, assume that the goal of a study is to choose between monitoring the 

temperature or the pressure. In this case, the effect of all the states must be aggregated and 

then the most critical node chosen, since monitoring a node provides information about all the 

states. The second category is when the objective of identifying the risk leading indicators is to 

mitigate the most adverse effect on the system. As an example, consider the case with the 

option to reduce the adverse effect of high temperature or the adverse effect of high pressure. 

In this case, considering the effects of other states, such as low temperature and low pressure, 

might yield misleading results.  

The two-step approach is also a good strategy to address the problem of identifying risk 

leading indicators in the Bayesian Networks with a large number of nodes, since a large 

Bayesian Network might have up to a thousand node-state pairs. Therefore, it is preferred to 

rank the nodes first, and then pick some of the top nodes and rank the node-state pairs of just 

those selected top nodes. More importantly, the node ranking step can be extended to the 

continuous Bayesian Network in future work.  
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While a model-based mathematical procedure such as the method presented here is an effective 

way for identifying elements of the causal risk model that could be good candidates as risk 

indicator, there are other important factors that must be considered in the final selection. 

Node Ranking Based on Conditional Entropy 

The first step is to rank the nodes based on a metric that can aggregate the effect of all states 

of a node on the “system” node in a single scalar. The proposed metric is named node metric 

and derived on the basis of entropy. Entropy is a metric for measuring the average uncertainty 

(or amount of information) about the value of a variable. Let i be a variable with discrete 

probability distribution P, where P (i = j) is the probability of i being in state j. Let Si be the set 

of the states associated with the random variable i. Entropy of i is defined as (Gray, 2013) 

(Okafor, 2005). 

𝐻𝐻(𝑖𝑖) = −∑ 𝑃𝑃(𝑖𝑖 = 𝑗𝑗)𝑘𝑘∈𝑆𝑆𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙2[𝑃𝑃(𝑖𝑖 = 𝑗𝑗)].      (1) 

When there is no uncertainty about the states of variable i, for example P (i = w) = 1, the entropy 

of i is zero.  

In Bayesian Networks, the determination of a subset of nodes (evidence) is used to calculate the 

posterior probability of unobservable nodes. The nodes representing the risk indicators must 

have higher influence on the posterior probability of the system node, denoting the underlying 

health state of a system (such as, failed or functional). Therefore, it is expected that obtaining 

information from such nodes reduces the average uncertainty of the system node more than 

other nodes in the Bayesian Network model of the system. The average uncertainty of the 

system node can be computed by employing Equation (1), and the uncertainty after obtaining 

some evidence can be formulated as conditional entropy.  

Let System node | i be the conditional entropy of system node given node i. Then, the node 

metric can be expressed as the following 

𝑛𝑛𝑙𝑙𝑛𝑛𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚) = 𝐻𝐻(𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 𝑛𝑛𝑙𝑙𝑛𝑛𝑒𝑒) − 𝐻𝐻(𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 𝑛𝑛𝑙𝑙𝑛𝑛𝑒𝑒 |𝑖𝑖).   (2) 

The conditional entropy of the system node given node i is the average uncertainty about the 

value of the system node after obtaining the findings from node, and it can be measured by  

𝐻𝐻(𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 𝑛𝑛o𝑛𝑛𝑒𝑒 | 𝑖𝑖)  = � ∑ ∑ − 𝑃𝑃(𝑠𝑠𝑦𝑦𝑠𝑠 =  𝑘𝑘 | 𝑖𝑖 = 𝑗𝑗) ×  𝑃𝑃( 𝑖𝑖 = 𝑗𝑗) ×  log  [ 𝑃𝑃(𝑠𝑠𝑦𝑦𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 𝑘𝑘 |𝑛𝑛𝑙𝑙𝑛𝑛𝑒𝑒 𝑖𝑖 =𝑗𝑗∈𝑆𝑆𝑖𝑖𝑘𝑘∈𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠

𝑗𝑗) ]�.         (3) 

The final expression for the node metric can be derived by substituting (1) and (3) in (2). The 

first risk leading indicator, denoted by I1, is the node that obtaining information from that node 

reduces the average uncertainty of the system node more than other nodes. Therefore, it can be 

identified as follows 

𝐼𝐼1 = arg max
𝑚𝑚

[𝑛𝑛𝑙𝑙𝑛𝑛𝑒𝑒_𝑠𝑠𝑒𝑒𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚(𝑖𝑖)].       (4) 

Besides, all the rest of the nodes in the Bayesian Network under study can be ranked based on 

their value of the node metric. However, often it is not useful nor cost-effective to consider all 
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the nodes in the ranking, for example, when the purpose of the study is to identify the risk 

leading indicators among the environmental factors, it is sensible to exclude non-environmental 

factors. Hence, it is well advised to consult with the expert who has developed the Bayesian 

Network to choose the most relevant nodes for the study.  

Node-State Ranking Based on Conditional Probability 

The goal of the second step is to evaluate and rank the influence of the various states of the 

critical nodes on the system node. A second metric based on conditional probability is defined 

to carry out this task.  

Node i in state j can be a potential leading risk indicator if obtaining the information that node i 

is in state j increases the failure probability of the system node. Besides, if node l in state k 

rises the failure probability more than node i in state j, then the node-state pair (l, k) should get 

a higher ranking than (i, j). Therefore, the node-state metric should encompass the following 

incremental effect on the failure probability: 

𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑒𝑒𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑠𝑠𝑙𝑙 𝑓𝑓𝑠𝑠𝑖𝑖𝑙𝑙𝑓𝑓𝑚𝑚𝑒𝑒 𝑝𝑝𝑚𝑚𝑙𝑙𝑝𝑝𝑠𝑠𝑝𝑝𝑖𝑖𝑙𝑙𝑖𝑖𝑠𝑠𝑦𝑦 =  𝑃𝑃(𝑠𝑠𝑦𝑦𝑠𝑠 = 𝑓𝑓𝑠𝑠𝑖𝑖𝑙𝑙 |𝑖𝑖 = 𝑗𝑗) −  𝑃𝑃(𝑠𝑠𝑦𝑦𝑠𝑠 = 𝑓𝑓𝑠𝑠𝑖𝑖𝑙𝑙),              (5) 

Where P (sys = fail | I = j) is the conditional probability of system node failure given node i is in 

state j. In the Bayesian Networks where the system node has several failure states, the weighted 

sum of the incremental failure probabilities should be employed. 

𝑤𝑤𝑒𝑒𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑒𝑒𝑛𝑛 𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑒𝑒𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑠𝑠𝑙𝑙 𝑓𝑓𝑠𝑠𝑖𝑖𝑙𝑙𝑓𝑓𝑚𝑚𝑒𝑒 𝑝𝑝𝑚𝑚𝑙𝑙𝑝𝑝𝑠𝑠𝑝𝑝𝑖𝑖𝑙𝑙𝑖𝑖𝑠𝑠𝑦𝑦 = � 𝑤𝑤𝑒𝑒𝑖𝑖𝑙𝑙ℎ𝑠𝑠(𝑘𝑘) × [ 𝑝𝑝(𝑠𝑠𝑦𝑦𝑠𝑠 =  𝑘𝑘 | 𝑖𝑖 = 𝑗𝑗) −  𝑃𝑃(𝑠𝑠𝑦𝑦𝑠𝑠 = 𝑘𝑘)]
𝑘𝑘∈𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠

𝑓𝑓

. 

(6) 

In the above expression, 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓  is the set of failure states of the system node, and the user must 

specify the weights. It should be noted that the weights must add up to one and they must be 

assigned in a way that reflects the importance of each failure state, that is, more critical failure 

states must have larger weights.  

Another factor that must be included in the node-state metric is the probability of the node-

state occurrence. If the chance of node i being in state j is too low, which is known as a rare 

event, there might be a loss interest in studying and monitoring that node state pair. Therefore, 

the probability of the event of node i being in state j into the node-state metric must be 

factored. The following expression is the proposed method for taking into account the 

probability of the event. 

 

𝑛𝑛𝑙𝑙𝑛𝑛𝑒𝑒_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒_𝑠𝑠𝑒𝑒𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚 (𝑛𝑛𝑙𝑙𝑛𝑛𝑒𝑒 𝑖𝑖 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 𝑗𝑗)  

=  � 𝑊𝑊𝑒𝑒𝑖𝑖𝑙𝑙ℎ𝑠𝑠(𝑘𝑘) × [
[ 𝑝𝑝(𝑠𝑠𝑦𝑦𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 𝑘𝑘 |𝑛𝑛𝑙𝑙𝑛𝑛𝑒𝑒 𝑖𝑖 = 𝑗𝑗) −  𝑃𝑃(𝑠𝑠𝑦𝑦𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 𝑘𝑘)]

1 − 𝑃𝑃(𝑛𝑛𝑙𝑙𝑛𝑛𝑒𝑒 𝑖𝑖 = 𝑗𝑗)
]

𝑘𝑘∈𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓

 

                         (7) 
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An analysis tool called “RiskLI” has been developed in MATLAB™ to execute the above risk 

indicator algorithms. The tool takes the Bayesian Network model and input data and returns 

the leading indicators according to the two-step method described above. Junction Tree Engine 

in Bayes Net Toolbox (BNT) (Murphy) is used to propagate the evidence.  

The tool takes the “.oobn” file of the Bayesian Network as input and returns the ranking results 

in an excel spreadsheet. RiskLI has three preparation steps that require user input: 

1. Define the system state node in the Bayesian Network model 

2. Assign weights to the system node states. The weights must add up to one, and the 

more critical failure states must have larger weights. Besides, success states must be 

assigned zero weight. 

3. The user has the choice of eliminating some nodes from the study, at her/his discretion 

based on other criteria such as technical feasibility, regulatory requirement, and cost.  

Instructions on how to use “RiskLI” are presented in the appendix. 

Illustrative Examples 
To demonstrate using the method, a numerical example is presented. A simple Bayesian 

Network is considered, modeling the interaction of three different factors (such as, 

temperature, humidity), three different failure mechanisms (such as internal corrosion, external 

corrosion, and drilling), and a system node. Factors F1, F2, and F3 and the failure mechanisms 

and M1 and M2 are assumed to have three discrete states each (low, medium, and high. Failure 

mechanism E1 is considered to have two states (presence or absence of the mechanism E1. The 

system node states are considered to be “failed” or “survived/functioning.” The Bayesian 

Network model is shown in Figure 48.  

Figure 48: Bayesian Network of the Illustrative Example 

 

Source: UCLA 
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Example 1 

Leading indicators can be identified among factors and mechanisms. Prior state probabilities 

are shown in Table 7. The conditional probabilities defining the Bayesian Network are assigned 

in such a way that factor node F1 has the highest influence on failure mechanism M1, and M1 

has the highest influence on the system node. Besides, E1 has the second highest influence on 

the system node. These conditional probabilities are shown in Table 8, Table 9, and Table 10. 

 

Table 7: Prior State Probabilities for Example 1  
 

F1 F2 F3 E1 

State 1 0.2 0.1 0.7 0.5 

State 2 0.4 0.2 0.1 0.5 

State 3 0.4 0.7 0.2 - 

Source: UCLA 

 

Table 8: M1 Conditional Probability Table for Example 1 

F2 State1 State2 State3 

F1 State1 State2 State3 State1 State2 State3 State1 State2 State3 

State 
1 

0.4 0.1 0.05 0.3 0.09 0.05 0.3 0.05 0.005 

State 
2 

0.3 0.1 0.15 0.4 0.09 0.05 0.3 0.05 0.005 

State 
3 

0.3 0.8 0.8 0.3 0.82 0.9 0.4 0.9 0.99 

Source: UCLA 
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Table 9: M2 Conditional Probability Table for Example 1 

Source: UCLA 

 

Table 10: System Node Conditional Probability Table for Example 1 

E1 State1 State2 

M2 State1 State2 State3 State1 State2 State3 

M1 State1 State2 State3 State1 State2 State3 State1 State2 State3 State1 State2 State3 State1 State2 State3 State1 State2 State3 

State1 0.6 0.7 0.1 0.91 0.8 0.15 0.95 0.9 0.005 0.1 0.15 0.1 0.1 0.15 0.15 0.05 0.1 0.005 

State2 0.4 0.3 0.9 0.09 0.2 0.85 0.05 0.1 0.995 0.9 0.85 0.9 0.9 0.85 0.85 0.95 0.9 0.995 

Source: UCLA 

 

The conditional probabilities are assigned such that that F1 in States 2 and 3 “excites” M1 to go 
to State 3 (Table 8), and M1 at State 3 forces the system node to go to State 2 (  

 State1 State2 State3 

F3 State1 State2 State3 State1 State2 State3 State1 State2 State3 

State 

1 
0.85 0.7 0.6 0.75 0.6 0.25 0.1 0.1 0.1 

State 

2 
0.1 0.25 0.3 0.2 0.3 0.25 0.3 0.2 0.1 

State 

3 
0.05 0.05 0.1 0.05 0.1 0.5 0.6 0.7 0.8 
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Table 9). Also, E1 at State 2 triggers the system node to go to State 2 (Table 10). With these 
numbers, E1, M1, and F1 are expected to be identified as leading indicators. 

Table 11 presents the results of the first step, that is the ranking according to the node metric. 
As expected, nodes M1, F1, and E1 rank higher than others, making them good candidates as 
leading indicators.  

 

Table 11: Node Ranking of the Illustrative Example 1 

Rank Node name Node_Metric Value 

1 M1 0.0869 

2 F1 0.0289 

3 E1 0.0225 

4 M2 0.0095 

5 F3 0.0018 

6 F2 0.0017 

Source: UCLA 

 

In the second step (node-state ranking), only the top three leading indicators (M1, F1, and E1) 

are considered. Table 12 presents the results of the node-state ranking. The results show that 

M1 in State 3, E1 in State 2, and F1 in States 2 and 3 are the most appropriate risk leading 

factors. 

Table 12: Node-State Ranking of the Illustrative Example 1 

Node name State Node-State Metric 

M1 3 0.3507 

E1 2 0.1269 

F1 3 0.0869 

F1 2 0.0406 

E1 1 -0.1269 

F1 1 -0.1913 

M1 1 -0.2936 

M1 2 -0.3309 
Source: UCLA 
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The negative values of node-state metric in the 5th to 8th rows mean that the realization of 

corresponding node-states decreases the failure probability of the system node. For example, 

the evidence that E1 is in State 1, reduces the system failure probability. Since the objective of 

the procedure developed in this study is to identify risk indicators, node-states with negative 

metrics would not be proper risk indictors.  

Example 2 

To further explore the performance of the method, the prior probability of E1 being in State 2 is 

changed in a way that makes it a rare event. The updated prior probabilities are shown in Table 

13. 

Table 13: Modified Prior Probabilities for Example 2 
 

F1 F2 F3 E1 

State 1 0.2 0.1 0.7 0.95 

State 2 0.4 0.2 0.1 0.05 

State 3 0.4 0.7 0.2 - 

Source: UCLA 

In this scenario, E1 is expected to receive a lower ranking since the probability of E1 being in an 
adverse state has been decreased by a factor of ten. The results of the node ranking procedure 
is shown in Table 14.  

 

Table 14: Node Ranking for Illustrative Example 2 

Rank Node name Node_Metric  

1 M1 0.3074 

2 F1 0.1512 

3 M2 0.0078 

4 F2 0.0050 

5 E1 0.0046 

6 F3 0.0019 
Source: UCLA 
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The results of the node-state ranking procedure is shown in Table 15. 

 

Table 15: Node-State Ranking for Illustrative Example 2 

Node name State Node-State  

M1 3 0.7699 

F1 3 0.1805 

E1 2 0.1392 

M2 3 0.0930 

F2 3 0.0741 

F1 2 0.0714 

F3 3 0.0508 

F3 2 0.0104 
Source: UCLA 

The results show that the E1 ranking has dropped in the node table from the second most 

important risk leading indicator to the second least important factor. Also, E1 in State 2 has 

dropped to the third critical node-state pair in the node-state table. These results confirm that 

the proposed algorithms produce intuitively expected results. 

Application to Pipeline Risk Models  

The ultimate objective of Task 5 of the project was to show how one would identify the leading 

risk indicators based on the Bayesian Network risk models developed and implemented in 

MARV™. This section summarizes the results of applying the procedure to Bayesian Network 

models of corrosion and TPD developed under Tasks 3 and 4. 

Risk Leading Indicators of the Corrosion Model 

The corrosion Bayesian Network risk model is described in the report section on Task 3. The 

Bayesian Network built in Hugin software is shown in Figure 49. The Bayesian Network node 

names and descriptions are provided in Table 16. The system node of the corrosion model is 

“Risk of Failure”, which has three states. Only the first state is assumed to be the failure state. 

Hence, the weights are [1,0,0]. 
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Figure 49: Bayesian Network of the Corrosion Model 

 

Source: DNV GL 

 

The model has 36 nodes. In consultation with the expert who developed the corrosion Bayesian 

Network model, only the nodes marked in purple in Table 16 were deemed appropriate for 

inclusion in the risk indicator determination process.  
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Table 16: Listing of Corrosion Bayesian Network Model Nodes 
Name Description 

Age of Coating Probability of age of the coating since construction or repair 

Bursting Pressure Probability of bursting pressure being in a certain range 

External Forces Probability that the external forces are high, medium or low to pipeline surface 

O2 Availability Probability of oxygen availability in the drainage water within a certain range 

SMYS Specified Minimum Yield Strength (psi) 

HCA Probability of High Consequence Area 

Composite Effect Probability of the combined effect of external forces and cathodic effect 

Risk of Failure Not in Scope of Model 

Coating Damage Probability of coating damage 

Coating Type Probability of the type of coating 

Index for Color 
Coding  Index for color coding 

Fraction of Year 
CP Operational Probability of fraction of year CP was operational 

Instant Off 
Potential Probability of effective surface potential being in a certain range 

Corrosion Rate 
Probability of the corrosion rate. Pitting rates are based on NACE classification SP0775-2013 
“Qualitative categorization of carbon steel corrosion rates” and NIST database for external 
corrosion. 

Dents/Girth Weld The probability of a dent or girth weld being present 

Depth of Cover Probability of the depth of the pipeline being at a certain range 

Failure Probability of failure (pipeline burst or leak) 

Flaw Depth Probability of the localized corrosion depth being within a certain range 

Flaw Length Probability of the localized corrosion length being within a certain range 

Leak  

OP Probability of the operating pressure being in a certain range 

pH under coating Probability of pH at the damaged coating being within a certain range 

Soil Porosity Probability of the soil porosity being within a certain range 

Annual Rainfall Probability of the average annual rainfall in the year 

Coating Shielding  Probability that the coating is susceptible to shielding 

Soil Stress Probability that the soil stress is high, medium or low 

Soil Type Probability of type of soil 

Surface 
Preparation for 
Coating 

Probability of the type surface preparation was used during construction before coating 
application 

Dissolved Solids Probability of concentration of total dissolved solids in the groundwater being within a certain 
range  

Topography Probability of the type of topography above the pipeline 

Wall Thickness Probability of the wall thickness value (inches) 

Weld/Bend Probability of having the presence of a weld or bend 

Source: UCLA 
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The results of the node ranking are shown in Table 17. 

Table 17: Node Ranking for the Corrosion Model 

Node Rank Node Label Node Metric Value 

1 HCA 0.0449 

2 OP 0.0422 

3 Wall Thickness 0.0137 

4 SMYS 0.0002 

5 Coat Type 0.0001 

6 Instant of Potential 8.5659E-05 

7 Age of Coating 4.9521E-05 

8 Fraction of Year 1.9923E-05 

9 Dents/Girth Weld 6.8184E-07 

10 Soil Type 3.1804E-07 

11 Dissolved Solids 2.0299E-07 

12 Weld/Bend 1.3881E-07 

13 Depth of Cover 9.1092E-08 

14 Topography 4.4305E-08 

15 Surface Preparation for Coating 4.0989E-08 

16 Annual Rainfall 1.4737E-08 

17 Soil Porosity 0 

Source: UCLA 

For the node-state ranking, all the nodes marked in purple in Table 16 were taken into account, 

without eliminating less important nodes. Table 18 presents the results. 
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Table 18: Node-State Ranking for the Corrosion Model 

Rank Node Label State Metric Value 

1 OP 11 0.3563 

2 Wall Thickness 1 0.1172 

3 HCA 1 0.0802 

4 SMYS 1 0.0153 

5 OP 10 0.0122 

6 Coating Type 6 0.0052 

7 Instant Off Potential 2 0.0046 

8 Instant Off Potential 1 0.0046 

9 Instant Off Potential 4 0.0044 

10 Instant Off Potential 3 0.0044 

11 Coating Type 2 0.0042 

12 Age of Coating 10 0.0035 

13 Fraction of Year CP was Operational 1 0.0034 

14 Instant Off Potential 5 0.0032 

15 Age of Coating 9 0.0030 

16 Coating Type 5 0.0027 

17 Age of Coating 8 0.0026 

18 Coating Type 4 0.0023 

19 Age of Coating 7 0.0022 

20 Age of Coating 6 0.0018 

21 Fraction of Year CP was Operational 2 0.0015 

22 Age of Coating 5 0.0014 

23 Dents/Girth Weld 1 0.0007 

24 Dissolved Solids 1 0.0004 

25 Soil Type 4 0.0004 

26 Weld/Bend 1 0.0003 

27 Age of Coating 4 0.0003 

28 Surface Preparation for Coating 5 0.0002 

29 Topography 4 0.0002 

30 Soil Type 3 0.0002 

31 Depth of Cover 3 0.0001 

32 Depth of Cover 2 0.0001 

33 Annual Rainfall 2 5.9012E-05 

34 Annual Rainfall 1 5.9012E-05 
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35 Depth of Cover 1 5.5488E-05 

36 Topography 3 4.8697E-05 

37 Dissolved Solids 2 1.7795E-05 

38 Soil Porosity 4 0 

39 Soil Porosity 3 0 

40 Soil Porosity 2 0 

41 Soil Porosity 1 0 

Source: UCLA 

Risk Leading Indicators of the Third Party Damage Model 

The Hugin model of the Third-Party Damage is shown in Figure 50. The model has 68 nodes a 

listed in Table 19. The system node of the TPD model is “Pipeline Effect” which has two states, 

failure, and success. Therefore, the weight vector is [1,0]. 
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Figure 50: Bayesian Network of the Third Party Damage 

 
Source: UCLA 
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Table 19: Nodes of the Third Party Damage Model 

Name Label Description 

Abnormal_
Drilling_Co
nditions_2 

Abnormal 
Drilling 
Conditions 

This node indicates when abnormal drilling conditions are encountered 
for Third Party Activity adjacent to a pipeline 

Activity Activity Activity undertaken near a “per mile” of the pipeline. 

Activity_1 Activity Nature Activity undertaken near a “per mile” of the pipeline. 

Activity_2 
Activity No 
Activity 

Activity undertaken near a “per mile” of the pipeline. 

Adjacent Adjacent The dig site is moved to an adjacent site, and it has a pipeline present. 

Awareness Awareness Third Party awareness of One Call center. 

Belief Belief 
Perceived strength of belief that the third party has in regard to pipeline 
location. 

Category_2 Category The category of the third party 

Check Check 
The event that when incorrect locations are presented to the utility, they 
will identify it. 

Commodity
_2 

Commodity Commodity that the pipeline is transporting 

Communic
ation 

Communicatio
n 

The event that the third party correctly communicates to the One Call 
Center the location of the activity. 

Damage_A
wareness_
2 

Damage 
Awareness 

For damaged but not failed pipeline, this node describes the probability 
that the third party is aware of pipeline damage. 

Damage_R
eported_2 

Damage 
Reported 

 

Diameter Diameter Pipe Diameter  

Diligence Diligence 
Event where the third party will contact other pipeline operators beyond 
simply calling the One Call Center. 

DOC_2 DOC Depth of Cover (DOC) of Pipeline 

Employme
nt_Status_
2 

Employment_
Status 

Employment status of Third Party personnel 
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Name Label Description 

Enforced 
Markout 

Enforced 
Markout 

Accuracy of markout 

Excavation 
Error 

Excavation 
Error 

The nature in which the pipeline is struck 

Excavation
_Nature_2 

Nature The nature of the excavation 

Excavation
_Precautio
ns_2 

Excavation 
Precautions 

Probability that Third Party undertakes precautions when conducting 
large scale excavations. 

Expertise Expertise_2 The expertise of the Third Party organization's personnel 

Final_Mark
out_2 

Final Markout Markout accuracy at the point where excavation starts 

Forced 
Notification 

Forced 
Notification 

The event that a third party contacts the One Call Center if they 
become aware of pipeline presence due to above ground preventive 
measures (signage). 

Identified Identified 
The event where a third party who had not made an attempt to contact 
the One Call center is discovered by a right of way (ROW) patrol. 

Ignores Ignores 
The event that when faced with preventive measures (signage), the 
third party will ignore the warnings and continue with the excavation. 

Immediate
_Pipeline_
_State_2 

Imm. Pipeline 
State 

 

Initial_Mark
out 

Initial_Markout State (including accuracy) of their initial markout of the utility. 

Inspection_
Detects_D
amage_2 

Inspection 
Detects 
Damage 

This node represents the probability that a utility inspection regime will 
detect damage. 

Inspection_
Regime_2 

Inspection 
Regime 

The extent to which the third party inspects its work, where it may 
identify damage incurred on pipelines. 

Jackhamm
er_2 

Jackhammer Presence of Jackhammers at Third party Activity 

Location_C
lass_2 

Location Class Location Class of the pipeline. 
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Name Label Description 

Markout 
State 

Markout State Initial markout of the utility 

Markout_Er
ror_1 

Markout Error 
(1) 

Initial markout of the utility 

Markout_Q
ualification
s 

Markout_ 

Qualifications 
Qualifications of the personnel marking out the pipeline 

Markout_R
esponsibilit
y 

Markout_ 

Responsibility 
Responsibility for utility markout responsibility 

Markout_S
peed 

Markout_Spee
d 

Qualifications of the personnel marking out the pipeline. 

Material_2 Material Pipeline Material 

Motivation Motivation 
Propensity for Third Party to engage One Call Center beyond 
geographic awareness characteristics 

Multiple 
Pipelines 

Multiple 
Pipelines 

The event that there are pipelines in the vicinity of the first pipeline in an 
original third party activity site. 

Nonwelded
_Coupling_
2 

Non-welded 
Coupling 

Presence of non-welded coupling, which only occurs on plastic pipes 

Onecall Onecall Third party engages One Call center (or “811” phone number) 

Onecall - 
Adjacent 

Onecall - 
Adjacent 

The event that the third party engages One Call center after relocating 
in the immediate vicinity 

Onecall 
Coverage 

Onecall 
Coverage 

The probability that a pipeline exists within the One  Call System remit 

Owner_Co
ntacted 

Owner_ 

Contacted 
Event that the pipeline owner is contacted 

Pipeline__
State_2 

Pipeline State  

Pipeline_Ef
fect_2 

Effect 
The end effect of third party activities. This will either result in the 
pipeline being “failed” or “not failed.” 

Pipeline_St
rike 

Pipeline Strike The nature in which the pipeline is struck 
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Name Label Description 

Pipeline_St
rike_2 

Pipeline Strike 
W/O 
Awareness 

The nature in which the pipeline is struck 

Presence_
2 

Presence Pipeline presence correctly identified to Third Party. 

Pressure_2 Pressure  

Prevention
_ 

Below_2 

Prevention 
Below 

Below ground prevention 

Recordkee
ping_2 

Recordkeepin
g 

The extent to which the third party keeps and maintains records. 

Relocation
_2 

Relocation 
Ability for Third Party to relocate to a nearby location but within the 
vicinity of the original markout. 

Revised_ 

Markout_2 

Revised 
Markout 

Third Party technicians identify improper markouts. This then prompts 
the third party to identify correct markout procedures. 

Right_of_
Way_Patrol
ling 

ROW The extent to which the utility undertakes right of way patrolling. 

Signage Signage Any preventive measures of pipeline above ground. 

Standard_
Awareness
_2 

Standard 
Awareness 

Extent to which the Third Party is aware of utility guidance and 
standards. 

State State State in the United States where the pipeline is located. 

Third_Party
_Workforce
_Experienc
e_2 

Third Party 
Workforce 
Experience 

This node indicates probabilities associated with Third Party Workforce 
Experience 

Training Training The training that the Third Party Organization internally undertakes. 

Uitility_Rep
airs_Pipelin
e_2 

Utility Repairs 
Pipeline 

This node describes whether the utility, on learning that the pipeline has 
been damaged, initiates repair 
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Name Label Description 

Understood Understood 
The state where the utility has correctly understood the location of the 
third-party activity site given that the third party has tried to 
communicate it prior to its activity. 

Utility_Repr
esentation_
2 

Utility 
Representatio
n 

This node describes the extent to which a utility representative is 
present at the third-party activity. 

Vehicle_Pi
peline_Con
tact_2 

Vehicle 
Pipeline 
Contact 

This node represents the probabilities associated with the nature of 
vehicle contact with pipelines. 

Vehicles_ 

Present_2 

Vehicles 
Present 

This node identifies the probability of construction vehicles being 
present for the Third-Party Activity 

Year_2 Year Year of Installation 

Source: UCLA 

 

According to the expert who developed the corrosion model, the nodes marked purple in Table 

19 are the only ones required to be considered in the study.  

The node ranking results are presented in Table 20. The results for node-state ranking are 

shown Table 21. All the nodes marked by purple in Table 19 are included in the study for the 

node-state ranking. 
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Table 20: Node Ranking of the Third Party Damage Model 

Node Rank Node Label Metric Value 

1 DOC 0.0171 

2 Utility Representation 0.0079 

3 Diameter 0.0073 

4 Inspection Detects Damage 0.0062 

5 Utility Repairs Pipeline 0.0017 

6 Prevention Below 0.0010 

7 Signage 0.0009 

8 ROW 0.00089 

9 Location Class 0.00060 

10 Pressure 0.00019 

11 Markout_Speed 0.00012 

12 Awareness 4.75E-05 

13 Commodity 1.69E-06 

14 Material 1.136E-06 

15 Year 1.643E-07 
Source: UCLA 
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Table 21: Node State Ranking of the Third Party Damage Model 

Rank Node label State Metric Value 
1 Inspection Detects Damage 2 0.3652 
2 Utility Repairs Pipeline 2 0.0705 
3 DOC 1 0.0698 
4 Diameter 1 0.0372 
5 Utility Representation  1 0.0317 
6 Utility Representation   2 0.0261 
7 DOC_2 2 0.0237 
8 Prevention Below  1 0.0157 
9 Diameter 2 0.0149 
10 ROW 9 0.0139 
11 Signage 2 0.0132 
12 Location Class  3 0.0112 
13 Location Class  4 0.0110 
14 Location Class  2 0.0055 
15 Markout Speed 5 0.0052 
16 Pressure  1 0.0036 
17 Pressure  2 0.0033 
18 Markout Speed 4 0.0032 
19 Awareness 1 0.0022 
20 Awareness 2 0.0021 
21 Material  3 0.0020 
22 Awareness 3 0.0014 
23 ROW 1 0.0009 
24 Awareness 4 0.0008 
25 Pressure  3 0.0006 
26 Commodity  1 0.0004 
27 Awareness 5 0.0003 
28 Year  1 0.0002 
29 Mark out Speed 3 0.0002 
30 Year  2 6.9429E-05 

Source: UCLA 
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Conclusions 
This section describes a method and tool developed for identifying leading risk indicators of a 

system or a process that is modeled by a Bayesian Network-based risk model. A two-step 

method was developed based on the concepts of conditional entropy and conditional 

probability.  

In the first step, the nodes of the Bayesian Network were ranked based on a metric that was 

formulated around the idea of conditional entropy. This metric is named node metric and can 

rank the risk model nodes based on their overall impact on probability of the systems level risk 

metric. The metric is very useful in selecting a subset of the model elements for a more detail 

analysis and ranking based on the states of each node and corresponding prior likelihood as 

described below.  

The second step was the node-state ranking based on a defined node-state metric. The node-

state metric is formulated on the concept of conditional probability and is able to rate the 

states separately.  

The method was implemented in a MATLAB™ package named RiskLI, and applied to the 

Bayesian Network models developed for corrosion risk and third party damage risk.  

While a model-based mathematical procedure such as the method presented here is an effective 

way to identify elements of the causal risk model that could be good candidates as a risk 

indicator, there are other important factors that must be considered in the final selection. Some 

of the basic guidelines in applying the method are:  

• Disregard the nodes with negative value. If the value for a node or a node-state pair is 

negative, it means that “evidencing” that node doesn’t decrease the target node (failure) 

uncertainty, and therefore, there is no gain in monitoring that node. 

• Exclude the non-physical nodes or nodes that cannot be monitored. Some of the nodes 

in the system are not accessible, observable, or not of interest for the study. It is 

recommended to exclude those nodes from the study before running the ranking 

algorithm.  

• Additional factors such as cost, industry standards, or regulatory requirements may be 

considered in ranking and selection of risk indicators. 

  



97 

CHAPTER 5:  
Synthesis 

Introduction 
The previous chapters in this report present work on modeling two major pipeline threats: 

external corrosion and third-party damage (TPD). The threats were modeled using a Bayesian 

network method called MARV™, which stands for Multi-Analytic Risk Visualization. The results 

are presented in Chapter 2 for the external corrosion threat and Chapter 3 for the TPD threat. 

Additionally, Chapter 4 shows the use of entropy calculations to quantify the impact of 

individual events on the overall pipeline threat probability. The benefits of the MARV™ method 

demonstrated in the previous chapters include: 

• MARV™ is a mechanistic threat assessment method that is based the mechanism of 

failure rather than empirical correlations and thus is applicable for wider conditions 

without sacrificing the accuracy of the model. This is the opposite of empirical models 

and works reasonably well in the conditions for which those models have been 

developed, but also provides results with inputs with greater uncertainty outside of 

these conditions. 

• MARV™ is capable of integrating different types of knowledge (for example, subject 

matter expertise, mechanistic models, statistical databases, and sensor data) into a 

centralized system. All types of information are treated the same using conditional 

probability tables relating the likelihood of an event knowing other events are true. 

• MARV™ overcomes the problems generated by uncertain and unknown data. MARV™ 

uses probability density functions that describe the relative likelihoods for each variable 

to take on any given value, and takes every possible state into consideration. Even if the 

state is very unlikely, it is considered. This unique property gives engineers the 

flexibility to use several values with paired probability for inputs instead of using single 

deterministic values, thus eliminating the necessity to use conservative values to replace 

unknown data.  

• MARV™ predicts the desired results in a distribution format with clear uncertainty (that 

is generates all possible outcome with corresponding probability). This is different from 

conventional modeling approach that use deterministic values for all inputs, thus 

producing a defined set of results, which could lead to overlooking other possible 

scenarios. Understanding the uncertainty of the outcome is very helpful on selecting 

proper action towards the risk mitigation. 

• The final benefit of the Bayesian method was identified as most useful by the project’s 

industry partner and is the focus of this chapter. The discussion shows how the 

MARV™-based decision making approach is different from conventional approaches, 

and how MARV™-based data prioritization process uses data uncertainty to help 
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pipeline operators determine what data is most useful and help answer questions such 

as “What data would reduce uncertainty of threats the most? What data should we 

gather first? And when do we have enough data?” 

Decision Making Process  

Conventional Process 

When there is a need to evaluate the threat or risk associated with a pipeline, a series of 

questions arise. What is the major threat to the system? Will that threat cause pipeline failure? 

What is the best solution to reduce the likelihood of such undesired events or potential adverse 

impacts?  

The decision-making process affects the ability to answer these questions. Decision-making for 

typical pipeline risk assessment and integrity threat assessments (like external corrosion direct 

assessment [ECDA] and internal corrosion direct assessment [ICDA]) generally follows a linear 

approach. The first step is to gather relevant data. The next step is to analyze the data and 

interpret results. Finally, a determination is made of the required follow-up actions based on 

the results (for example, calculate the next reassessment interval or identify proper mitigation 

actions). These steps are repeated over time as the actions taken change the threats and new 

data are acquired. The sections below introduce the decision-making processes and discusses 

their deficiencies for conventional risk assessment and threat assessment.  

Risk Assessment Decision Making Process 

The Pipeline and Hazardous Materials Safety Administration (PHMSA) defines pipeline risk 

assessment as a process “used to evaluate unwanted consequences and the likelihood of those 

consequences occurring,” and defines the purpose of risk assessment as “to develop 

information that allows organizations to make decisions that reduce or eliminate unwanted 

consequences by changing their likelihood, their adverse impacts, or both” (PHMSA, 2017). Any 

risk assessment must include two components: failure probability assessment and consequence 

assessment. Since this report focuses on external corrosion and third party damage (TPD) 

threat assessment, only the failure probability part of risk assessment is discussed here. 

Figure 51 is a typical flow chart of decision-making process for pipeline risk assessment for the 

failure probability portion of a risk model. The first step in assessing risk is to identify the 

threats and collect all relevant data. In this step, all relevant data needed as inputs to the risk 

model must be clearly defined. If some inputs are unknown or cannot be obtained, the risk 

model will not work until the specific values or, at least best guesses, are provided for these 

inputs. For example, unknown inputs could be assigned with clear values based on industry 

statistics or subject matter expertise. Next, all data collected that has specific values are put 

into the risk model, which generates a defined set of results, such as the probability of failure, 

based on the collected specified inputs and the model logic. Depending on regulatory 

requirements, industry standards, or company policies, the generated risk results will be 

compared with certain threshold values. The outcome is either that the chance of failure is low 

(meaning it is not necessary to conduct any immediate action), or the potential of failure 
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occurrence is high (so actions must be taken to mitigate the risk). Of course, the risk model 

should be re-run to determine proper actions if any new data is provided and fed into risk 

model. 

Figure 51: Typical Decision Making Process for Risk Model 

 

Source: DNV GL 

 

This typical decision-making process leads to some inefficiencies. For example, the subsequent 

steps can only be executed after the completion of prior steps, no step can be skipped, and it is 

impossible to run the risk model with only part of the available data.  

Data collection is the first and probably most important step of pipeline risk assessment. This 

seemingly reasonable approach, however, has two major problems. First, pipeline engineers 

tend to assign conservative values to unknown inputs. Consequently, when there are too many 

unknowns, the final results can be too conservative and not provide credible information. 

Moreover, one of the objectives of the risk assessment is to prioritize pipeline locations that 

must be investigated (or mitigated) first. By using conservative values, the entire pipeline 

appears to be at risk. In such conditions, it becomes difficult for pipeline engineers to decide 

where the pipeline should be inspected, leading to critical locations being missed or unnoticed. 

Another problem is that the conservatism level is hard to define, especially when a factor has 

effects on multiple threats. A so-called conservative assumption may not hold the same level of 

conservatism in relation to the same threat, let alone throughout all threats. For example, when 

considering internal corrosion threat of liquid pipelines, an assumed high flow rate is a 
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conservative assumption for erosion-corrosion (because a higher flow rate will cause severe 

erosion), but it is not a conservative assumption for microbially induced corrosion (because a 

higher flow rate will decrease the microbial accumulation, thus the corrosion rate). Another 

example is a high cathodic protection (CP) value, which is considered helpful for preventing 

external corrosion of the pipeline due to soil chemistry or nearby alternating current. On the 

other hand, a high CP value will increase the deterioration rate of pipeline coating layers, 

leading to corrosion over the long term. These examples show that assuming defined 

conservative values is not easy, and it is difficult to control the level of conservatism. 

Threat Assessment Decision Making Process 

Direct Assessment is identified by the Gas Pipeline Integrity Management Rule as one of three 

acceptable methods to evaluate time-dependent threats to the integrity of a pipeline segment: 

external corrosion, internal corrosion, and stress corrosion cracking. Pipeline operators are 

required to act on the findings from direct assessment studies (PHMSA, 2017). The steps in 

ECDA, ICDA, and stress corrosion cracking direct assessment (SCCDA) are similar: 

• Pre-assessment step: Gather and integrate data to determine feasibility of direct 

assessment. 

• Indirect examination step: Based on findings in pre-assessment step, analyze the 

gathered data, find the possible indications of corresponding threats, and prioritize the 

excavation locations for direct examinations. 

• Direct examination step: Based on findings in indirect examination step, check the 

excavated pipe segments, determine the severity of defects induced by corresponding 

threats, and remediate or address the threats. 

• Post-assessment step: Based on the first three steps, evaluate the effectiveness of direct 

assessment and determine the reassessment interval. 

NACE defines the standard practice for ECDA (NACE 2010), ICDA (NACE 2016) and SSCDA 

(NACE 2015). Figure 52 shows a flow chart of ECDA with only the pre-assessment step and 

indirect examination step due to the size of chart. The green box highlights a typical linear part 

of the logic process. Similar to the data collection step in a risk assessment logic loop, the data 

gathering in threat assessment must continue until sufficient data are gathered, otherwise the 

following steps cannot be executed. Once sufficient data are collected, they are integrated and 

analyzed to judge the feasibility of applying indirect examination/inspection tools. Should any 

of these steps fail (if it is impossible to obtain sufficient data or infeasible to apply indirect 

examination/inspection tools), the logic process would stop and ECDA could not be applied.  

Due to these characteristics, the process of ECDA exhibits a very linear pattern. Obvious linear 

patterns are also observed in ICDA and SCCDA, as shown in Figure 53 and Figure 54 

respectively. Across ECDA, ICDA and SCCDA processes, the succeeding steps always rely on the 

completion of prior steps and the order of steps must be followed. Similar to conventional risk 

assessment approach, there inevitably is a waiting stage for gathering sufficient input data in 

the beginning. Moreover, not all input data are equally important to the final results. The 
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variation of some inputs may have minor impact, but the collection effort to get these inputs 

defined may not be trivial. Thus, waiting and collecting sufficient/or all relevant data (especially 

those data having little impact) could be a significant waste of limited resources, which could 

have been allocated to the sections where resource is urgently required. 

Figure 52: External Corrosion Direct Assessment Flow Chart 

 

Source: NACE, Reproduced from ANSI/NACE SP0502-2010 
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Figure 53: Internal Corrosion Direct Assessment Flow Chart  

 

Source: NACE, Reproduced from NACE SP0206-2006 

Figure 54: Stress Corrosion Cracking Direct Assessment Flow Chart  

 

Source: NACE, Reproduced from NACE SP0204-2008  
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MARV™ Decision Making Process 

Understanding Where the Uncertainty Comes From 

Due to time limitations, pipeline engineers cannot afford to wait for complete data sets to 

perform risk assessments. Therefore, risk assessment must be done with incomplete and often 

uncertain data, which creates barriers for conventional assessment approaches. However, in the 

MARV™ approach, data uncertainty (including missing data) is not a problem. Missing data is 

simply another source of uncertainty in the final risk results. In some cases, the variability or 

uncertainty of an input does not change the probability of failure; in other cases, small 

variability in one input can lead to catastrophic events. The importance of a variable can be 

determined using the methods discussed in Chapter 4 (leading indicators).  

The demonstrated MARV™ method considers all three sources of data uncertainty: 

• The use of average values instead of a time series 

• The lack of precision or accuracy in recording equipment 

• Missing data  

Furthermore, MARV™ accounts for knowledge uncertainty by incorporating different models or 

expert judgements in developing the conditional probability tables. 

Understanding where the uncertainty comes from is useful for the decision-making process. 

Take the prediction of flaw depth growth with time as an example. Since it is not possible to 

predict future pipeline flaw depth with absolute certainty, MARV™ instead predicts a pipeline 

flaw depth probability density function, which is a range of flaw depths paired with 

corresponding probabilities (for example, 50 percent chance to have a flaw depth of 0.05 inch, 

25 percent chance to have a flaw depth of 0.1 inch, and so on).  

Figure 55 depicts three hypothetical examples showing the predictions of growth in flaw depth 

in the short term (one year), medium term (five year) and long term (ten year). A flaw can grow 

without being treated, so the average value of flaw depth will increase from short term to 

medium term to long term (the position of curve peak on horizontal axis moves towards right 

from near future to far future). The uncertain input data makes the prediction of near future 

easier than the prediction of far future, as the uncertainty grows with time.  
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Figure 55: Evolution of Predicted Pipeline Flaw Depth in Time 

 

Source: DNV GL 

 

Uncertainty Drives the Decision Making Process 

The increase of flaw depth eventually leads to three different failure scenarios, as shown in 

Figure 56. In the first scenario, the probability of failure (POF, the area of curve above the 

unacceptable flaw depth) is within an acceptable range and there is no need for immediate 

action. In the second scenario, the POF is high, and because the uncertainty is low, the team is 

confident that the pipe section is going to fail. This scenario requires mitigation actions and it 

is not necessary to collect more data since the uncertainty is already low (results are confident). 

In the third scenario, the probability of failure is not as high as in the second scenario (that is, 

the shading area is smaller) but is still unacceptable. However, because of the high uncertainty 

of the prediction, it is unclear if the pipe section will fail or not. In this scenario, the uncertainty 

of the prediction must be reduced by collecting more data to be able to make a more confident 

decision. 

 

  



105 

Figure 56: Three Types of Distributions 

 

Source: DNV GL 

 

Understanding the uncertainty of a prediction leads to different decisions – no action, 

immediate mitigation, or gather more data. The flaw depth prediction and corresponding 

responses in Scenario 1 and Scenario 2 are very clear, but the flaw depth data in Scenario 3 are 

quite scattered, so no targeted actions could be determined except gathering more data to 

refine the flaw depth. With more data, Scenario 3 could transform into Scenario 1 or Scenario 2 

as shown in the examples below. 

Scenario 3: Uncertain Prediction Due to Lack of Data 

The MARV™ method predicts the flaw depth as a range of values with associated confidence 

level. As shown in Figure 56, the short-term prediction of flaw depth is more certain than 

prediction further into the future. The more data that is collected, the more confident is the 

prediction. Figure 57 shows the same concept with time on the x-axis. The red line represents 

the median flaw depth, the orange band represents the 90 percent confidence interval, and the 

yellow band represents the 99 percent confidence interval. The associated probability of failure 

POF is shown below the flaw depth chart. POF is calculated by integrating the portion of the 

flaw depth probability distribution that is above the unacceptable flaw depth. For example, if 

the shading area of the curve above the unacceptable flaw depth is 5 percent of the total curve 

area, there is a 5 percent chance that the flaw depth under study is larger than the unacceptable 

flaw depth, and thus POF is 0.05. 

Figure 57 shows how the prediction of pipeline flaw depth evolves over time. The flaw grows 

with time (the slope of the red line is the corrosion rate) and the uncertainty also increases with 

time (the confidence interval orange and yellow bands increase). Once the 99 percent 
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confidence interval (yellow band) crosses the unacceptable flaw depth, there is a 0.5 percent 

chance that the flaw depth analyses will fail. With time passing, the flaw depth grows and it 

becomes more and more likely to exceed the unacceptable level, and the probability of failure 

increases with time.  

When the upper boundary of 90 percent confidence interval (orange band) intersects the 

unacceptable level, it could be 5 percent chance that the flaw is deeper than acceptable 

threshold, resulting in a 5 percent POF. Eventually, when the red line (the median flaw depth) 

reach the unacceptable level, it indicates a POF of 50 percent. At Time 1, the uncertainty band is 

relatively narrow and only upper boundary of 99 percent confidence region cross the 

unacceptable flaw indicating a POF of 0.5 percent. With time passing, at Time 2, POF reaches 

threshold value which requires immediate actions. However, the uncertainty bands increase 

greatly from Time 1 to Time 2, making it difficult to decide whether the actual POF reaches 

threshold or not. To be more confident, more data must be collected to reduce the uncertainty 

band/confidence interval. Two possible outcome with more data collected are the median flaw 

depth keeps the same or reduces (Scenario 1 in Figure 56) or flaw depth increases (Scenario 2 in 

Figure 56). 

 

Figure 57: Evolution of Flaw Depth Prediction in Time   

 

Source: DNV GL 
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Scenario 3 Transformed to Scenario 1 

Gathering more data reduces the uncertainty of the predictions. When the median flaw depth is 

the same or lower, the predictions made in Scenario 3 might become like those in Scenario 1 

after another set of data collection. Figure 58 illustrates the value of collecting more data. In 

this example, the median flaw depth is the same as in Figure 57. However, the flaw depth 

predictions have less uncertainty. The reduced uncertainty has great impact on the decision-

making process. Although the median flaw depth is the same as the previous example, the 

range confidence intervals is smaller. Consequently, the 90 percent and 99 percent confidence 

internal do not reach the unacceptable flaw depth and POF stays below 0.5 percent, way lower 

than the threshold POF from Time 1 to Time 2. Since the uncertainty band is very narrow in this 

case, it is confidence that no action is necessary in this period. This example illustrates the 

benefit of gathering more data. The more data is gathered, the more certain are the predictions 

(confidence region shrinks) and consequently the next reassessment can be pushed out further 

in time, as the time point when the boundary of same confidence level intersects with 

unacceptable level is postponed. 

 

Figure 58: Evolution of Flaw Depth Prediction in Time with Reduced Uncertainty 

 

Source: DNV GL 
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Scenario 3 Transformed to Scenario 2 

Although it is preferred to gather more data to reduce both uncertainty and median flaw depth, 

the practical case does not always go this route. Gathering more data could reduce uncertainty, 

but it is impossible to know its impact on the predicted median flaw depth – which could keep 

or reduce (Scenario 3 transformed to Scenario 1 above) or which could increase instead.  

Figure 59 illustrates an example where the uncertainty is reduced (manifested as narrower 

confidence intervals) but the median flaw depth is increased (the red line has steeper slope). 

Consequently, the POF increases greatly from Time 1 to Time 2. From integrity management 

point of view, this case is not desired, because this situation requires immediate actions (for 

example, inspections, assessments, mitigations, etc.) which always consume resources (time, 

staffing, monetary). But from decision making point of view, this case is very helpful, because it 

is confident that the POF will exceed the threshold shortly from Time 1 and it justifies the 

necessity of allocating resources to this system to bring down the likelihood of failure. It also 

indicates more data collection is not helpful for decision making, since the uncertainty is 

acceptably small enough to draw useful conclusion.  

 

Figure 59: Reduced Uncertainty and Increased Average with Additional Data 

 

Source: DNV GL 
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MARV™ Logic Process 

When data is certain, the MARV™ decision-making approach should be similar to conventional 

decision making approach, because the team can be confident that the outcome is either no 

action necessary for low POF case or immediate actions required for high POF case. But when 

uncertainty is high, there is a distinct difference setting MARV™ aside from conventional 

approaches. As discussed earlier, uncertain data is a great barrier for conventional decision 

making processes because they follow a linear approach. In contrast, the MARV™ method 

allows educated decision making based on understanding the uncertainties in different 

scenarios. Therefore, the MARV™-based decision-making logic loop is quite different from the 

conventional approach (Figure 60). 

 

Figure 60: MARV™ Logic Loop for Decision Making Process 

 

Source: DNV GL 

 

When performing the risk assessment, some data may already be present. Instead of waiting for 

all relevant data to be collected, the risk model in MARV™ approach can use all currently 

available data input to generate the probability of failure (leak or rupture). The MARV™ model 
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generates an average failure probability and a clear uncertainty associated with the average 

failure probability, based on the uncertainty of all inputs. Following this step, there are three 

pathways, shown in green, red, and orange. The green pathway is the shortest (having the least 

steps). Similar to the conventional approach, if the probably of failure is low, no immediate 

action is required at this moment (this corresponds to Scenario 1), although long-term 

monitoring is still necessary to ensure the studied targets are within an acceptable range. 

However, if the probability of failure is higher than the threshold values, it has two scenarios 

depending on the uncertainty level: the uncertainty of failure probability is low (red pathway) or 

the uncertainty of failure probability is high (yellow pathway). 

The red pathway shows the uncertainty on whether the POF is high is low. This means that the 

pipe segments have a high chance of failure, thus it is essential to identify the relevant actions 

to reduce the failure probability or mitigate the consequences due to failure. 

The orange pathway indicates that the average probability of failure is high, but because of 

insufficient data it is uncertain whether the pipe segments truly have a high probability of 

failure. Therefore, more data must be gathered to provide conclude whether or not further 

actions are required to mitigate the risk. Once more data is input into the risk model, the 

decision-making process would go through the logic loop again and the outcome could be 

either affirmative (green and red pathways) or still informative (orange pathway). If the 

conclusion is still not affirmative, the decision-making process will keep moving along the 

orange pathway in the logic loop. Thus, the MARV™ decision making is an iterative process 

until an affirmative conclusion is reached. 

However, collecting data requires allocation of resources like staffing, time, and money, and the 

more data that is needed, the more resources will be required. Also, it may be infeasible to 

collect some types of data under some circumstances. Moreover, for some instances at some 

time points, gathering more data does not help achieve more favorable or desired results, 

especially when the types of data have minor impact on final results. Therefore, there should be 

a stopping point for gathering more data, as discussed below.  

MARV™-Based Data Prioritization 
As discussed above, data gathering can be resource intensive and resources are not unlimited. 

In many cases, processes are slowed or stopped by limited resources such as short time frames, 

limited monetary budgets, and lack of relevant experience. How to allocate these limited 

resources more efficiently becomes an urgent need. For data gathering, it means determining 

what data to collect, how much to collect, and when to stop collecting. Prioritizing different 

types of data for gathering efforts involves two aspects – benefits and costs. 

Benefits are what data gathering can provide for decision making. More data mean fewer 

assumptions, more affirmative information for decision making, and more confident following 

actions. However, these benefits come at the expense of resource consumption, that is, costs of 

human resources, time, and monetary budgets. To prioritize data gathering, it is essential to 

have a clear understanding of all associated costs (labor, equipment, time, monetary, and so on) 
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to find the optimal point at which the costs of further data gathering outweigh the benefits of 

the additional data. Since conventional approaches rely on sufficient data or even a complete 

dataset, the costs of spending limited resources may have already outweighed the benefits of 

gathering some trivial data.  

The unique feature of the MARV™ method allows the possibility of data prioritization based on 

insufficient or even no data, which overcomes this barrier. By using the MARV™ method, it is 

possible to achieve a win-win situation where the operations become safer and costs are saved. 

Data prioritization could help avoid of spending resources on gathering unnecessary or 

unimportant data. It could save the costs for data gathering efforts because less data must be 

collected. Moreover, it could also make assessments easier by reducing the amount of data that 

must be processed and analyzed in the subsequent steps, in which it also reduces human 

resources and time.  

Data prioritization could also help the important data get more focused without the 

interference by trivial or unimportant data (specifically, the “right” data get collected and 

analyzed), which facilitates a better understanding of the corresponding threats. In this sense, 

it helps to make operations safer. Finally, data prioritization could help allocate the limited 

resources to the parts of the process that require resources.  

The MARV™ method could save resources spent on unnecessary data and subsequent steps of 

using these trivial data, and it also could facilitate the understanding of the threats to the 

pipeline operations. These saved resources and better knowledge could be applied to other 

segments and systems, leading to safer overall operating performance (system-wide or 

company-wide) with cost effective solutions.  

The next section provides a hypothetical case study of how MARV™ driven data prioritization is 

performed based on cost-benefit analysis. 

MARV™-Based Data Prioritization Case Study 

To better explain how the MARV™ method drives decision making, this section will use a 

hypothetical case with very limited data to illustrate a generic MARV™-based data prioritization 

to guide what data should be collected and when should data gathering stop. External corrosion 

was selected as the example threat. The in-line inspection (ILI) data (previous flaw depth) is 

assumed as the only known data for a pipeline segment, since ILI tools such as magnetic flux 

leakage, transverse flux inspection, and ultrasonic testing are widely used by pipeline operators 

to measure and record anomalies like corrosion, cracks, laminations, dents, gouges, or other 

defects along the pipelines to manage pipeline integrity. Moreover, code 49 CFR 192.939 

requires pipeline operators to perform Internal Inspection Tool, Pressure Test or Direct 

Assessment every certain number of years, the maximum allowable interval of which is based 

on the percent specified minimum yield strength level where the pipeline operates (Code of 

Federal Regulations, 2016). The hypothetical base case and two sensitivity tests below will 

demonstrate the generic process of data prioritization starting with knowing only the previous 

flaw depth and the impact on decision making on handling the external corrosion threat. 
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Hypothetical Base Case 

ILI data (feature depth) is assumed to be the only data known for the base case. More 

specifically, the base case assumes that ILI was run in 2014 and at that time the recorded flaw 

depth in the pipe segment was 0.09 inch ± 0.01 inch (99 percent confident). Based on the 

external corrosion model discussed in Chapter 2, the MARV™-based external corrosion model 

with inputs is shown in Figure 61. 

All input nodes except the Previous Flaw Depth node (the value identified by ILI) have an even 

distribution of data categories, since they are assumed unknown at this stage (that is, it is 

equally likely for each possibility for each type of data). Only the Previous Flaw Depth node has 

a known input as 100 percent chance in 0.05-0.1 inch (highlighted as a red bar as shown in the 

figure). 

If ILI data is the only known data, one cannot proceed with conventional assessments – 

especially risk assessments – without gathering further data. Thanks to the unique capability of 

the MARV™ method of using distribution values for inputs, the assessment model is not 

required to have all inputs specified with definite values. Subsequently, the probability of 

failure could be produced from the assessment model. The flow chart of this process following 

the MARV™ method is shown as the three highlighted steps in Figure 60. 

With all inputs being unknown except previous flaw depth, the projection of evolving flaw 

depth in the near 20 years (from 2014) is shown in Figure 62. The curve in the middle reflects 

the median flaw depth changing with time. The darker region at the two sides of median flaw 

depth curve represents the 90 percent confidence level of flaw depth, while the lighter region 

further outside represents the 99 percent confidence level of flaw depth. In 2014, the flaw 

depth is 0.09 inch ± 0.01 inch (99 percent confident). With time passing, the flaw depth grows 

and the uncertainty also increases, as demonstrated by wider regions at the same confidence 

level. For example, in 2014, it is 99 percent confident that the flaw depth is between 0.08-0.1 

inch with a median of 0.09 inch and a span of 0.02 inch. Ten years later, in 2024, the flaw depth 

range increases to 0.09-0.45 inch with a much large median size of 0.23 inch and a much larger 

span of 0.36 inch to reach the same confidence level. If the upper boundary of 99 percent 

confidence region intersecting with the failure flaw depth is used as threshold (assuming POF is 

large enough at this point to require some mitigation actions), it can be found that the first 

time when the flaw size goes beyond the failure depth occurs between 2023 and 2024. 

However, although the POF is large at this point, given the uncertainty is high, it is very difficult 

to draw a useful definite conclusion on whether actions are required by that time, because of 

the scattered flaw size.  
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Figure 61: Hypothetical Base Case 

 

Source: DNV GL 
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Figure 62: Base Case Projection of Flaw Depth Evolution  

 

Source: DNV GL 

 

According to the MARV™ approach shown in Figure 62, the situation of high POF and high 

uncertainty (yellow pathway) requires additional data to be gathered for more effective decision 

making. The ensuing question is which data should be collected next.  

First Sensitivity Test 

Benefits and costs should be analyzed to prioritize the data gathering effort. For example, the 

benefit of cover data could be defined as how much a clear value for depth of cover (how deep 

the pipeline is buried) can reduce the uncertainty around flaw depth. The cost of cover data can 

be defined as the expenses, including indirect costs like time and human resources and direct 

costs like monetary budgets associated with a depth of cover survey. The ratio of benefit to 

cost represents the benefits brought to decision making per unit of resource (for example, per 

dollar), and can be used to prioritize the effort to gather each type of data. 

Reducing the uncertainty was determined using a series of “what if” scenarios: 

• What if: 

o Depth of cover was 0 meters (pipe is above ground)? 

o Depth of cover was 0-1 meters? 

o Depth of cover was 1-2 meters? 

o Depth of cover was 2-3 meters? 
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By assuming a defined value category for all input nodes (with other inputs remaining 

unchanged) and using the average change of the uncertainty of flaw depth, one can calculate 

the change in uncertainty (such as how much that data would help reduce overall uncertainty). 

Results of the sensitivity analyses are the same as in the previous chapter for the first round 

(when there is no data). In the following rounds, results will be different because the sensitivity 

analyses take into account data that has already been collected. 

To decide what data should be collected next, the usefulness of the data (specifically reducing 

the uncertainty in the benefit column of the Table) is compared to the cost of gathering that 

data. Results are shown in Table 22. 

Table 22: Benefit Cost Analysis from Sensitivity Test 

Node Label Node Description Benefit 
Data 
Cost 

Benefit/ 
Cost Ratio 

Coating 
Type 

Probability of the type of coating 1.1E-04 $500 2.3E-07 

Instant off 
Potential  

Probability of effective surface potential 8.6E-05 $500 1.7E-07 

Age of 
Coating 

Probability of age of the coating since 
construction or repair 

5.0E-05 $500 9.9E-08 

Fraction of 
Year  

Probability of fraction of year CP was 
operational 

2.0E-05 $500 4.0E-08 

Dents 
The probability of dent or girth weld being 
present 

6.8E-07 $250,000 2.7E-12 

Soil Type Probability of type of soil 3.2E-07 $25,000 1.3E-11 

Dissolved 
Solids 

Probability of concentration of total dissolved 
solids in the groundwater within a certain 
range 

2.0E-07 $25,000 8.1E-12 

Weld/Bend 
Probability of having the presence of a weld 
or bend 

1.4E-07 $500 2.8E-10 

Depth of 
Cover  

Probability of the depth of the pipeline 9.1E-08 $21,000 4.3E-12 

Topography 
Probability of the type of topography above 
the pipeline  

4.4E-08 $25,000 1.8E-12 

Surface 
Preparation 
for Coating 

Probability of type surface preparation was 
used during construction before coating 
application 

4.1E-08 $1,000 4.1E-11 

Annual 
Rainfall 

Probability of average annual rainfall in the 
year 

1.5E-08 $1,000 1.5E-11 

Soil Porosity Probability of soil porosity 0 $25,000 0 

Source: DNV GL 
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In this hypothetical example, data gathering efforts are executed according to the benefit/cost 

ratio in Table 22. The data collection provides the following values: 

• Coating age is 42 years 

• Coating type is 3PE 

• Fraction of CP operation since pipe installment 99 percent 

• CP potential in the range of -800millivolts~-950 millivolts (mV) 

These data are fed into the MARV™ model as shown in Figure 63. The Age of Coating node, 

Coating Type node, and Fraction of Year CP node now change from multiple green bars to a 

single red bar, representing a 100 percent fixed range, and the Instant Off Potential node 

changes from green to two blue bars (as it is still a distribution). 
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Figure 63: Base Case with Identified Coating Age, Coating Type, Cathodic Protection Potential and 
Cathodic Protection History 

 

Source: DNV GL 
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An iteration process (running the assessment model and generating probability of failure) is 

executed again as shown in Figure 60. With these additional data (coating age, coating type, CP 

potential and CP history), the evolution of flaw depth is projected as shown in Figure 64. The 

median flaw depth found with the gathering of additional coating and CP data grows more 

slowly than under the base case with only the previous flaw depth knowledge. The associated 

90 percent confidence and 99 percent confidence regions also become narrower, indicating that 

the generated flaw size from assessment model is more centralized around the median value 

and it is no longer a rough guess of flaw size. In 2024, the flaw size range changes to 0.09 inch 

to 0.37 inch. Compared with base case, the median value reduces from 0.23 inch to 0.16 inch 

and the span shrinks from 0.36 inch to 0.28 inch. Similar to the base case, if the intersection 

between failure flaw size and the upper boundary of 99 percent confidence region is used as 

the threshold, the time point when flaw size exceeds the failure flaw size is postponed by five 

years from 2023-2024 (blacked dashed line in Figure 64) to 2028-2029 (blue dashed line in 

Figure 64).  

This indicates a possibility of postponing some physical inspection efforts (like ILI or a 

pressure test) to a later time, which could lead to reduced operating costs since the inspections 

themselves are costly. Moreover, these inspections require temporary shutdown of 

corresponding pipelines, which stops delivering products to consumers and could lead to 

business losses. If these refined results are still not satisfactory for decision making, another 

sensitivity test may be required to determine what other data could help reduce the uncertainty 

of results. 

Figure 64: Projection for Flaw Depth Evolution with Additional Coating and Cathodic Protection 
Data 

 

Source: DNV GL 
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Second Sensitivity Test 

Another round of sensitivity testing is performed to analyze which type of data is most helpful 

to reduce the uncertainty. Knowing the previous flaw depth (0.09 inch ± 0.01 inch), coating age 

(40-45 years), coating type (3PE), fraction of CP operation (0.75-1.0) and CP potential (50 percent 

in the range of -800mV~-850mV and 50 percent in the range of -850mV~-950mV), the 

benefit/cost ratio is summarized in Table 23 below. A data usefulness index combining 

different value categories under the same input type is also used for easy eye guidance. 

Table 23. Usefulness of Data with Knowing Coating and Cathodic Protection Information in 
Addition to Previous Flaw Depth 

 

Source: DNV GL 
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Based on Table 23, narrowing the range of CP potential is still the most helpful action, although 

there is a 50 percent chance that the CP potential is in the range of -800mV~-850mV and a 50 

percent chance that it is in the range of -850mV~-950mV. Assuming that another data gathering 

effort is able to identify the CP potential to be 100 percent in the range of -850mV~-950mV 

instead of the previous bipolar distribution, the MARV™ model changes as shown in Figure 65. 

Figure 65: MARV™ Model with Finalized Cathodic Protection Potential 

 

Source: DNV GL 
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A second iteration process (run assessment model and generate probability of failure) is 

executed again. With the additional defined CP potential data, together with the data identified 

in first sensitivity test, the evolution of flaw depth is projected as shown in Figure 66 below. 

Figure 66: Projection for Flaw Depth Evolution with Defined Cathodic Protection Potential 

 

Source: DNV GL 

 

The median flaw depth with the additional coating and CP data grows much more slowly than 

in the base case that only included the previous flaw depth. The associated 90 percent 

confidence and 99 percent confidence region also become much narrower, indicating the 

estimated flaw size is more confident around the median value. In 2024, the flaw size range 

changes to 0.09 inch - 0.29 inch. Compared with base case, the median value reduces from 0.23 

inch to 0.14 inch and the span shrinks greatly from 0.36 inch to 0.20 inch. With the additional 

information, the flaw depth uncertainty increases with time also slow down much compared 

with base case. The same as base case, if the intersection between failure flaw size and the 

upper boundary of 99 percent confidence region is used as the threshold, it can be found in the 

period 2014-2034, it is very unlikely that flaw size exceeds the failure flaw size, indicating the 

pipeline is quite safe. If the uncertainty and the median flaw depth value is acceptable at this 

stage, this could give decision-making a strong confidence without conducting any immediate 

mitigation actions, as indicated by the green pathway in MARV™ flow chart in Figure 60. From 

this decision tree, it is not necessary to collect more data (as uncertainty is satisfactory) and 

unnecessary to conduct immediate actions (as the flaw depth/POF is satisfactorily low). 
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The benefits of combining the first round of data gathering efforts and the second round of 

data gathering efforts are shown in Figure 67 below. The time when the flaw depth exceeds the 

failure depth is postponed by about five years by the first round of data gathering efforts. The 

second round of data gathering efforts could further postpone the time by more than five 

years. Postponing inspections and tests should comply with regulatory requirements, industry 

standards, and the operator’s internal policy; however, postponing of inspections and tests as 

long as possible could save significant resources without compromising integrity and safe 

operations of the pipelines. The saved resources could be allocated to other segments/systems 

for data gathering or mitigation actions, to enhance the overall operating performance of the 

system. 

 

Figure 67: Benefits of Data Gathering Efforts 

 

Source: DNV GL 

Advantages of Bayesian Network Approach 

As described in the previous sections the MARV™ method is capable of handling uncertain data 

to generate meaningful information. This particularity is used to drive the decision-making 

process. This section will discuss two additional benefits of using the MARV™ method. 

Capability to Use Imperfect Knowledge of Threats in the Assessment 

In conventional assessment models, the cause and effect relationship must be clearly defined, 

specifically the explicit expression for the logic function of converting from input to output 

must be established. To obtain accurate results, every function from input to outcome should 
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be based on scientific derivations, which requires every step in the threat-failure mechanism to 

be thoroughly understood. However, in many situations, the cause-effect relationship is obscure 

for some steps in the threat mechanism, due to limited knowledge of some threats especially 

threat interactions, impeding the science based establishment of clear functions between input 

and output. A common workaround is to use empirical correlations to form certain equations 

such as Y=f(X), where Y is the output and X is the input, because strict scientific derivations are 

infeasible based on current knowledge.  

These empirical correlation works well when a system is fully understood. However, pipeline 

engineers cannot wait for all knowledge related with threats of interest to be developed (as it 

may take many years of research to have mature understanding) and they require a reliable tool 

to build and apply the inferential reasoning in wider conditions. 

Bayes rule is the key to inferential reasoning, even in uncertain conditions. Figure 68 represents 

domain knowledge relating two variables linked by a cause consequence relationship. In this 

example, when x is low y is also low, when x is high then y is also high. However, the position if 

the transition between high and low values is uncertain, representing a lack of subject matter 

expertise. 

Figure 68: MARV™ Cause-Effect Relationship 

 

Source: DNV GL 

Instead of using a deterministic formula Y=f(X), the MARV™ method presents the relationship 

as a conditional probability table:  

• When X is low, Y is 100 percent low. 

• When X is medium, Y is 10 percent low, 80 percent medium, and 10 percent low. 

• When X is high, Y is 100 percent high. 

 

Due to this unique property of Bayesian probabilistic approach, the MARV™ method is not 

limited by specific conditions thus has wider applicability. It is also able to integrate different 

types of knowledge like subject matter expertise, models, software, databases, and sensor data 

into a central system, since there is no requirement to fit the data into a deterministic formula. 
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External models could be run multiple times to generate the conditional probability tables. Data 

could be processed through statistical analysis and then easily compiled into conditional 

probability tables. Subject matter expert knowledge, though difficult to present in a 

deterministic formula, could also be easily transformed into conditional probability tables in a 

Bayesian approach. Moreover, with more knowledge about the cause-effect relationship, the 

conditional probability tables could be refined and the generated outcome would be closer to 

the actual situation. 

Capability to Analyze "Similar" Segments and Compare Threats 

The word “similar” appears multiple times in 49 CFR 192 Subpart O (Code of Federal 

Regulations, 2016) to refer to segments that are alike. Examples include: 

• 192.917(b) mandates “an operator must gather and evaluate the set of data … and 

consider both on the covered segment and similar non-covered segment…” 

• 92.917(e)(5) specifies “… the operator must evaluate and remediate, as necessary, all 

pipeline segments (both covered and non-covered) with similar material coating and 

environmental characteristics. An operator must establish a schedule for evaluating and 

remediating, as necessary, the similar segments…” 

• 192.927(c)(3)(iii) requires “Evaluate the potential for internal corrosion in all pipeline 

segments (both covered and non-covered) in the operator's pipeline system with similar 

characteristics to the ICDA region containing the covered segment”.  

• 192.929(a) defines SCCDA as an assessment “by systematically gathering and analyzing 

excavation data for pipe having similar operational characteristics and residing in a 

similar physical environment”. 

• 192.1007(c) states, when evaluating and ranking risk, “An operator may subdivide its 

pipeline into regions with similar characteristics…and for which similar actions likely 

would be effective in reducing risk”. 

 
Although similar pipe segments are required to be evaluated and remediated, the definition of 
“similar” is qualitative and vague, which makes it difficult for pipeline engineers to group like 
segments and conduct assessments and remediation for the group. Using external corrosion as 
an example, the apparently similar pipe specifications, operating conditions, and physical 
environment does not guarantee similar flaw depth growth or similar uncertainty of the flaw 
depth, which are the two key parameters for evaluating external corrosion threat. Those 
apparently similar values may lead to the situations as shown Figure 69 and Figure 70.  
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Figure 69: Segments are NOT Similar 

.  

Left, Different Flaw Depth. Right, Same Average Flaw Depth but Different Uncertainty Levels. 

Source: DNV GL 

 

Figure 70. Pipe Segments That Can be Considered as “Similar”  

 

Such as Same Flaw Depth and Same Uncertainty 

Source: DNV GL 

 

Obviously, the segments in Figure 69 (a) cannot be treated as similar because both median flaw 
depth and the uncertainty is drastically different. Although the median flaw depth is similar in   
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Figure 69 (b), the two segments should not be categorized into the same group for evaluation 

and remediation, since the flaw depth uncertainty between the two segments is very different 

and it is hard to judge. Only when both median flaw depth and the uncertainty of depth are 

similar can the segments be considered “similar,” as shown in Figure 70. The “similarity” 

between two segments could be compared with the generated distributions from MARV™ 

approach. As discussed in previous sections, conventional assessments only generate 

deterministic results, but only the MARV™ method can produce distribution of result values 

with paired possibilities. This could allow pipeline engineers to categorize the truly alike 

segments into the same group, and apply similar analyses and remediation approaches to 

mitigate the risks in compliance with regulatory requirements, avoiding mistakenly grouping 

the segments with apparently similar parameters that are actually different. 

Conclusions 
Two threats were chosen by project’s industry partner: external corrosion and third party 

damage. DNV GL modeled the external corrosion threat and UCLA made a model for the third-

party damage threat. Both threats were modeled using Bayesian networks. The causes of the 

threats were first identified and a network of causal relationship leading to pipeline failure 

were created.  

Results show that it is possible to quantify these threats even though some of the input data 

maybe uncertain (and sometime unknown). Calculation of the entropy of Bayesian network 

threat models was used to identify leading indicators (parameters that are the most effect on 

the probability of pipeline failure). Sensitivity analyses were also used to show what data 

should be gathered next. Sensitivity analyses differ from the leading indicators because it 

considers already known data and the cost of data gathering activities. It was shown how the 

MARV™ method uses uncertainty to drive the decision-making process. The data prioritization 

based on the method is the answer to questions such as “what data should be gathered first?” 

and “when is there enough data?” 
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CHAPTER 6:  
Project Benefits to the State of California 

The Energy Commission’s Public Interest Energy Research Natural Gas program has a goal to 

improve natural gas pipeline integrity and safety. In this project, DNV GL demonstrated that its 

Multi-Analytic Risk Management (MARV™) tool can improve safety, integrity, and reliability of 

pipelines in California by enabling operators to better anticipate potential pipeline problems 

and therefore make timely decisions to prevent failures. The tool uses a Bayesian Network-

based risk assessment method to enable effective, systematic, and verifiable decision-making 

that uses all the knowledge and data available to the pipeline company. The tool also improves 

the ability of different stakeholders to understand and communicate risks.  

Background 
There are currently more than 300,000 miles of mainline natural gas transmission pipelines 

and 1.3 million miles of local distribution pipelines in the United States. California’s intrastate 

natural gas pipeline system consists of approximately 10,500 miles of onshore transmission 

pipeline in addition to gathering and distribution lines. Recent pipeline failures in California 

have resulted in injuries, fatalities, and environmental damage. Furthermore, pipeline failures 

have resulted in shutdowns and increased energy costs.  

Pipelines must transport natural gas safely and reliably in a complex environment. Several 

recent pipeline failures suggest that pipeline companies lack the means to systematically 

anticipate various threats and make timely decisions. These threats are highly location-specific 

and likely to increase over time. The current risk assessment practices used by pipeline 

companies are not sufficiently predictive because they do not quantitatively link the leading 

indicators to risks. Mechanistic understanding of failure processes is necessary to anticipate 

failures that have not yet occurred. Further, system data is sparse and knowledge is scattered 

among different experts. A risk assessment method is required that can integrate diverse 

sources of knowledge, including the mechanistic understanding of failure processes, and 

function with sparse data. The method should be capable of being updated using real-time 

sensor and monitoring data.  

In this project, DNV GL demonstrated the Bayesian network risk assessment method for 

corrosion threat and third-party damage threat. The project also demonstrated how sensitivity 

analysis on the threat models can drive decision-making; that is, whether to gather more data 

or to mitigate risk. When the model predicts a high probability of failure with low uncertainty, 

it would recommend mitigation actions. On the other hand, if the probability of failure is high 

with high uncertainty, it is possible that gathering more data will reduce risk and therefore 

expensive mitigation actions might not be required. Pipeline companies can use this tool to 

make cost-effective decisions on pipeline maintenance and reduce pipeline failure risks while 

managing maintenance costs. 
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The MARV™ tool, based on Bayesian network risk management method, would enable effective, 

systematic, and verifiable decision-making using all knowledge and data available to the 

pipeline company. The MARV™ tool would help increase safety, integrity and reliability of 

pipelines in California by enabling operators to anticipate potential pipeline failures. The tool 

would also improve the ability of different stakeholders to communicate risk. 

The sections below describe the specific benefits that may result from this project.  

Safety Benefits 
Under the United States Department of transportation, the Pipeline Hazardous Materials Safety 

Administration (PHMSA) collected pipeline incident reports since 1970. In California, on 

average, there are 5 incidents annually for the past 20 years, and 9 annually for the past 3 

years6. Total costs associated with these incidents have been $605 million in the past 20 years 

and $18 million in the past 3 years. Based on 20-year data, there have been 0.12 fatalities and 

0.67 injuries per incident, with average monetary damage per incident of about $6 million. 

The MARV™ tool improves risk assessment by integrating scattered expert knowledge and 

uncertain data to capture new failure processes. This could help pipeline operators better 

detect potential pipeline failures, and enable more effective decision-making regarding the 

failure risks. Better decision-making would reduce failures and associated injuries and fatalities 

for maintenance workers and people who live near pipelines.  

Based on historical trends, if the MARV™ tool can reduce two pipeline incidents each year, it 

would decrease fatality and injury, and reduce monetary damage an average of $12 million per 

year.  

Reliability 
The MARV™ tool can help decision-making based on the best knowledge and data available to 

the pipeline company. This would allow companies to anticipate threats and perform timely 

corrective actions, thereby reducing failures and pipeline network downtime.  

Reduced Costs 
Pipeline companies can use the tool to make cost-effective decisions on pipeline maintenance 

and operations. The project demonstrated how sensitivity analysis on the threat models can 

drive decision-making on whether to gather more data or to mitigate risk. When the model 

predicts a high probability of failure with low uncertainty, the model recommends mitigation 

actions. On the other hand, if the probability of failure is high with high uncertainty, it is 

possible that gathering more data will reduce risk and therefore expensive mitigation actions 

might not be required.  

                                                 
6 Pipeline incident 20 year Trends. PHMSA. https://phmsa.dot.gov/pipeline/library/data-stats/pipelineincidenttrends, 
Accessed on October 9, 2017.  

https://phmsa.dot.gov/pipeline/library/data-stats/pipelineincidenttrends
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From an operational perspective, MARV™ can prioritize data-gathering resources that 

contribute most to risk reduction. Pipeline companies can use this tool to make cost-effective 

decisions on pipeline maintenance and operations, and therefore reduce pipeline failure risks 

while managing costs. In addition, the increased safety will reduce costs related to injuries, 

fatalities, property damage and environmental cleanup.  

Retain Knowledge within Pipeline Organization  
The current risk assessment practices used by pipeline companies are not sufficiently 

predictive because they do not quantitatively link the leading indicators to risks. Mechanistic 

understanding of failure processes is necessary to anticipate failures that have not yet 

occurred. Furthermore, system data is sparse and the knowledge is scattered among different 

experts. MARV™ can integrate diverse sources of knowledge, including the mechanistic 

understanding of failure processes, the ability to update from real-time sensors and monitoring 

data, and can function with sparse data. This enables the pipeline company’s knowledge to be 

retained despite the experts’ departures or retirements. In addition, the tool integrates the 

augmented knowledge with sensor and monitoring data. It can then analyze all the available 

information to provide actionable decision-making assistance to pipeline operators in a data-

driven and systematic manner.  

Enhance Communication of Risks 
The MARV™ tool could enable effective, systematic, and verifiable decision-making using all the 

knowledge and data available to the pipeline company. The tool presents its results in a user-

friendly graphical interface, which enhances pipeline operators’ ability to communicate risks 

and mitigation actions of a complicated system to internal and external stakeholders. For 

example, it could help regulators to understand threats and the maintenance needs of the 

pipelines when approving pipeline costs. 

Increase Consumer Confidence 
Although the project is not directly focused on consumers, the visual representations of the 

threats in MARV™ increase the ability to communicate risk mitigation actions by pipelines 

which could lead to greater consumer confidence. MARV™ can improve a utility’s safety and 

reliability records which would improve its reputation. 

Enable Economy 
Most businesses require reliable supplies of electricity and natural gas. For certain businesses 

and industries with critical natural gas loads, the lack of a reliable gas supply could be 

economically devastating. MARV™ could improve reliability of natural gas supply, and therefore 

attract economic development, or prevent businesses and industries from leaving the state.  
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Health Benefits 
The release of hydrocarbons from natural gas leaks can contaminate the soil and ground water. 

In addition, inhaling natural gas can aggravate asthma and other respiratory conditions. The 

MARV™ tool can reduce the likelihood of leaks, which will lead to improved public health.  

Reduce Greenhouse Gas Emissions 
The primary component of natural gas is methane which is a potent greenhouse gas. According 

to the Environmental Protection Agency, methane is more efficient at trapping radiation than 

carbon dioxide. Pound for pound, the comparative impact of methane is more than 25 times 

greater than carbon dioxide over 100 years (EPA, n.d.). By increasing the safety and reliability of 

natural gas pipelines, the MARV™ tool can help reduce the likelihood of leaks and other 

incidents in which methane is released from pipelines into the atmosphere. 

Project Level Benefits 
The MARV™ tool has been customized, demonstrated and validated for California pipelines. 

The successful demonstration of the tool with Southern California Gas Company (SoCal Gas) 

could assist other utilities in California applying to their systems. The project benefits 

California natural gas ratepayers by increasing pipeline safety and reliability as detailed above. 

In addition, the project itself is expected to provide benefits to the California economy as DNV 

GL expands it pipeline risk management services and commercializes MARV™. In addition, 

knowledge gained from this project will benefit SoCalGas and the pipeline industry in general. 

Economic Benefits Through Tool Commercialization  

Since DNV GL’s project team is based in California, any expansion of the company’s MARV™-

related risk management services will create additional revenue and jobs in California. Initially, 

the tool’s path to market will be through technical service by DNV GL consultants using the 

tool. However, it is DNV GL’s goal to eventually license the software tool directly to users in the 

pipeline companies. If successful, DNV GL would start expanding risk management services to 

the pipeline companies in California and beyond, and the tool would create technical consulting 

and software-related jobs for the MARV™ team which is primarily based in California. 

In addition, the knowledge of the two UCLA research scientists who worked on this project will 

be retained in the university and passed on in the academic setting.  

Knowledge Transfer to Southern California Gas Company 

Since knowledge transfer to SoCal Gas is not limited by confidential agreements, all data, threat 

models, and results from the project have been presented to SoCal Gas using the MARV™ 

interface, as well as in two meetings at SoCal Gas headquarters in Los Angeles. 
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Knowledge Transfer through Industry Conferences 

Two conferences have been selected to openly present work done in this project: 

• International Pipeline Conference (IPC) 2018, Calgary, AB, Canada: This conference was 

selected because this conference draws members of the pipeline industry from around 

the world including California operators. The IPC is internationally renowned as the 

world's premier pipeline conference. This is a not-for-profit conference and proceeds 

continue to support educational initiatives and research in the pipeline industry. 

• Probabilistic Safety Assessment and Management 2018: UCLA, Los Angeles, CA: The 

Probabilistic Safety Assessment & Management (PSAM) conference focuses on risk, risk 

management, reliability, safety, and associated topics. It meets internationally every two 

years, and will next be held at UCLA in September 2018. The PSAM conference brings 

together experts from various industries, research organizations, regulatory authorities 

and universities in the fields of nuclear, process and chemical industries, off-shore and 

marine, transportation, space and aviation, IT and telecommunications, bio and medical 

technology, civil engineering, financial management and other fields. The multi-

disciplinary conference is aimed to cross-fertilize methods, technologies and ideas for the 

benefit of all.  
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GLOSSARY  

Term Definition 

ANSI American National Standards Institute 

BNT Bayes Net Toolbox 

Bayes theorem Describes the probability of an event, based on prior knowledge of 

conditions that might be related to the event. 

BN Bayesian Network. A type of Probabilistic Graphical Model that can be used 

to build models from data and/or expert opinion. They can be used for a 

wide range of tasks including prediction, anomaly detection, diagnostics, 

automated insight, reasoning, time series prediction and decision making 

under uncertainty. 

Bow-tie 

method 

A risk evaluation method that can be used to analyze and demonstrate 

causal relationships in high risk scenarios. Once the control measures are 

identified, the Bowtie method also identifies the ways in which control 

measures fail. 

Cathodic 

disbondment 

The loss of adhesion between a cathodic coating and its metal substrate 

due to the products of a corrosion reaction that takes place in the 

interface of coatings. 

CFR Code of Federal Regulations 

Confidence 

interval 

A range of values so defined that there is a specified probability that the 

value of a parameter lies within it. 

Coupon Pre-weighed and measured metal strips used to estimate the rate of metal 

corrosion in a system by comparing the initial weight with the weight 

following a period of time of exposure to corrosive elements in the 

system.  

CP Cathodic protection. Prevents corrosion by converting all of the anodic 

(active) sites on the metal surface to cathodic (passive) sites by supplying 

electrical current (or free electrons) from an alternate source. 

DOC Pipeline Depth of Cover 

DOT Department of Transportation 

EC External corrosion 

ECDA External Corrosion Direct Assessment 
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Term Definition 

ESD Event Sequence Diagram 

HCA High Consequence Area 

Holidays Defects or holes in pipeline coatings that expose the bare pipeline steel to 

the underground environment. 

ICDA Internal Corrosion Direct Assessment 

ILI In-line inspection 

IPC International Pipeline Conference 

Markov 

process 

A random process whose future behavior cannot be accurately predicted 

from its past behavior and which involves random chance or probability. 

MARV™ Multi-Analytic Risk Visualization 

MATLAB™ MATLAB (matrix laboratory) is a numerical computing environment and 

proprietary programming language developed by MathWorks. MATLAB 

allows matrix manipulations, plotting of functions and data, 

implementation of algorithms, creation of user interfaces, and interfacing 

with programs written in other computer languages. 

mm/year Millimeters per year 

mV Millivolts 

Monte Carlo 

technique 

A mathematical technique that generates random variables for modelling 

the risk or uncertainty of a certain system, with the random variables or 

inputs modelled on the basis of probability distributions. 

NACE Established in 1943 as the National Association of Corrosion Engineers, 

NACE International provides globally recognized standards that cover 

major industries including oil and gas, infrastructure, transportation, and 

maritime. 

NIST National Institute of Standards and Technology 

NTSB National Transportation Safety Board 

O2 Oxygen  

pH A measure of acidity or alkalinity of water soluble substances. 

PHMSA Pipeline and Hazardous Materials Safety Administration 

POF Probability of failure. The likelihood that a piece of equipment will fail at a 

given time and an important part of effective risk analyses. POF is half of 



134 

Term Definition 

the equation when determining risk as part of Risk Based Inspection 

method. 

Poisson 

process 

In probability and statistics, a type of random mathematical object that 

consists of points randomly located on a mathematical space that is used 

as a mathematical model for seemingly random processes. 

PSAM Probabilistic Safety Assessment & Management Conference 

psi Pounds per square inch 

SCC Stress corrosion cracking 

SCCDA Stress Corrosion Cracking Direct Assessment 

SMYS Specified Minimum Yield Strength 

SoCal Gas Southern California Gas Company (utility company) 

Stochastic 

model 

A form of modeling that includes one or more random variables to 

estimate probability distributions of potential outcomes in systems and 

phenomena that appear to vary in a random manner. 

Stray current Currents flowing through paths other than the intended circuit; metallic 

structures like buried pipelines represent a low-resistant current path and 

can be vulnerable to the effect of stray currents, such as corrosion.  

TPD Third party damage. Damage caused by third-party excavation or other 

activities near and around pipelines. 

UCLA University of California, Los Angeles 
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APPENDIX A: 
User Instruction of “RiskLI” MATLAB Package 

The RiskLI package is intended for identifying the risk leading indicators of the risk and 

reliability models that are constructed using Discrete Bayesian Belief Network. The package is 

coded in MATLAB, and it makes use of the Bayesian Network Toolbox (BNT). BNT is a powerful 

MATLAB toolbox for studying and making inference in all types of Bayesian Belief Networks.  

The RiskLI takes a Bayesian Network as an input and sorts the nodes and states based on their 

influence on uncertainty and risk of the model. The top-ranked nodes and states are candidates 

of risk leading indicators. The package only accepts “.oobn” files for input, and the output 

format is“.xlxs”.  

Prior to running the RiskLI package, take the following steps: 

1. Add the "xlwrite" package and the BNT package to the current MATLAB path. 

2. Make sure that the “.oobn” file of the BN under study is saved in the same directory as 

the RiskLI. 

While running the algorithm, you will see the following prompts that request your answer.  

1. File name: 

 

 

Type the BN file name including “.oobn”, in the box. The preset file name is 

“Example_BN.oobn” that is the Bayesian Network of the illustrative example presented 

in this report. Press the return key or ok button to input the file name. 
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2. System Node: 

 

 

Select the system node from the list. Press the return key or ok button to input the 

system node. 

3. Weights of the system node’s states: 

 

 

Insert the state’s weights in the box. Make sure that the weight assignment follows these 

rules: (1) weights must add up to one, (2) they must be in the same order as the states, 

(3) the more critical failure states must have larger weights, (4) the weights of the 

success states must be assigned zero, and (5) they must be separated by commas. For 

example, for a system node that has three states [success 1, success 2, failure 1], you 

should input "0, 0, 1."  
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4. Nodes in the study: 

 

 

Select the nodes you want them to be considered in the analysis. To include multiple 

nodes, press and keep the shift key and select the nodes at the same time. Make sure 

not to include the system node. Press the return key or ok button to input the nodes 

names. 

The results of the nodes and states ranking are printed in a file named "Results.xlsx". This excel 

file has two sheets. The first sheet contains the sorted list of the nodes, and the second sheet 

includes the node-state pairs ranking. The file is saved in the same directory as the current 

MATLAB path.  
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